

An Introduction to
Optimization

The primary goal of this text is a practical one. Equipping students with enough knowledge
and creating an independent research platform, the author strives to prepare students for
professional careers. Providing students with a marketable skill set requires topics from
many areas of optimization. The initial goal of this text is to develop a marketable skill set
for mathematics majors as well as for students of engineering, computer science, econom-
ics, statistics, and business. Optimization reaches into many different fields.

This text provides a balance where one is needed. Mathematics optimization books are
often too heavy on theory without enough applications; texts aimed at business students
are often strong on applications, but weak on math. The book represents an attempt at
overcoming this imbalance for all students taking such a course.

The book contains many practical applications but also explains the mathematics behind
the techniques, including stating definitions and proving theorems. Optimization tech-
niques are at the heart of the first spam filters, are used in self-driving cars, play a great
role in machine learning, and can be used in such places as determining a batting order in a
Major League Baseball game. Additionally, optimization has seemingly limitless other ap-
plications in business and industry. In short, knowledge of this subject offers an individual
both a very marketable skill set for a wealth of jobs as well as useful tools for research in
many academic disciplines.

Many of the problems rely on using a computer. Microsoft’s Excel is most often used, as
this is common in business, but Python and other languages are considered. The consider-
ation of other programming languages permits experienced mathematics and engineering
students to use MATLAB or Mathematica, and the computer science students to write
their own programs in Java or Python.

Jeffrey Paul Wheeler earned his PhD in Combinatorial Number Theory from the University
of Memphis by extending what had been a conjecture of Erdős on the integers to finite groups.
He has published, given talks at numerous schools, and twice been a guest of Trinity College at
the University of Cambridge. He has taught mathematics at Miami University (Ohio), the Uni-
versity of Tennessee-Knoxville, the University of Memphis, Rhodes College, the University of
Pittsburgh, Carnegie Mellon University, and Duquesne University. He has received numerous
teaching awards and is currently in the Department of Mathematics at the University of Pitts-
burgh. He also occasionally teaches for Pitt’s Computer Science Department and the College
of Business Administration. Dr. Wheeler’s Optimization course was one of the original thirty
to participate in the Mathematical Association of America’s NSF-funded PIC Math program.

Textbooks in Mathematics
Series editors:
Al Boggess, Kenneth H. Rosen

An Introduction to Analysis, Third Edition
James R. Kirkwood

Multiplicative Differential Calculus
Svetlin Georgiev, Khaled Zennir

Applied Differential Equations
The Primary Course
Vladimir A. Dobrushkin

Introduction to Computational Mathematics: An Outline
William C. Bauldry

Mathematical Modeling the Life Sciences
Numerical Recipes in Python and MATLABTM

N. G. Cogan

Classical Analysis
An Approach through Problems
Hongwei Chen

Classical Vector Algebra
Vladimir Lepetic

Introduction to Number Theory
Mark Hunacek

Probability and Statistics for Engineering and the Sciences with Modeling using R
William P. Fox and Rodney X. Sturdivant

Computational Optimization: Success in Practice
Vladislav Bukshtynov

Computational Linear Algebra: with Applications and MATLAB• Computations
Robert E. White

Linear Algebra With Machine Learning and Data
Crista Arangala

Discrete Mathematics with Coding
Hugo D. Junghenn

Applied Mathematics for Scientists and Engineers
Youssef N. Raffoul

Graphs and Digraphs, 7th ed
Gary Chartrand, Heather Jordon, Vincent Vatter and Ping Zhang

An Introduction to Optimization: With Applications in Machine Learning and Data Analytics
Jeffrey Paul Wheeler

https://www.routledge.com/Textbooks-in-Mathematics/book-series/CANDHTEXBOOMTH

https://www.routledge.com/Textbooks-in-Mathematics/book-series/CANDHTEXBOOMTH

An Introduction to
Optimization

With Applications in Machine
Learning and Data Analytics

Jeffrey Paul Wheeler

MATLAB is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB software.

First edition published 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-42550-0 (hbk)
ISBN: 978-1-032-61590-5 (pbk)	
ISBN: 978-0-367-42551-7 (ebk)

DOI: 10.1201/9780367425517

Typeset in CMR10 font
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9780367425517

Contents

Acknowledgments xiii

List of Figures xv

List of Tables xix

List of Algorithms xxi

List of Notation xxiii

I Preliminary Matters 1

1 Preamble 3
1.1 Introduction . 3
1.2 Software . 3
1.3 About This Book . 4

1.3.1 Presentation . 4
1.3.2 Contents . 4

1.4 One-Semester Course Material 6
1.5 Acknowledgments . 6

2 The Language of Optimization 9
2.1 Basic Terms Defined . 9
2.2 When a Max or Min Is Not in the Set 10
2.3 Solving an Optimization Problem 11
2.4 Algorithms and Heuristics 12
2.5 Runtime of an Algorithm or a Heuristic 14
2.6 For Further Study . 14
2.7 Keywords . 15
2.8 Exercises . 15

3 Computational Complexity 17
3.1 Arithmetic Complexity . 17
3.2 Asymptotic Notation . 19
3.3 Intractability . 21
3.4 Complexity Classes . 23

3.4.1 Introduction . 23

v

vi Contents

3.4.2 Time, Space, and Big O Notation 25
3.4.3 The Complexity Class P 25
3.4.4 The Complexity Class NP 26
3.4.5 Utility of Complexity Classes 27

3.5 For Further Study . 27
3.6 Keywords . 28
3.7 Exercises . 28

4 Algebra Review 29
4.1 Systems of Linear Inequalities in Two Variables – Geometric

Solutions . 29
4.1.1 Examples . 30

4.2 Solving Systems of Linear Equations Using Linear Algebra . 33
4.2.1 Gauss-Jordan Elimination 33
4.2.2 Gaussian Elimination Compared with Gauss-Jordan

Elimination . 35
4.3 Linear Algebra Basics . 36

4.3.1 Matrices and Their Multiplication 36
4.3.2 Identity Matrices, Inverses, and Determinants of

Matrices . 40
4.3.3 Solving Systems of Linear Equations via Cramer’s Rule 44
4.3.4 Vector and Matrix Norms 45
4.3.5 Vector Spaces . 52

4.4 Matrix Properties Important to Optimization 57
4.4.1 Eigenvalues . 57
4.4.2 Unimodular Matrices 58

4.5 Keywords . 61
4.6 Exercises . 61

5 Matrix Factorization 66
5.1 LU Factorization . 66
5.2 Cholesky Decomposition . 69
5.3 Orthogonality . 71
5.4 Orthonormal Matrices . 74
5.5 The Gram-Schmidt Process 78
5.6 QR Factorization . 80
5.7 Keywords . 83
5.8 For Further Study . 83
5.9 Exercises . 84

II Linear Programming 85

6 Linear Programming 87
6.1 A Geometric Approach to Linear Programming in Two

Dimensions . 87
6.1.1 Example . 87
6.1.2 Summary . 91
6.1.3 Keywords . 92

Contents vii

6.2 The Simplex Method: Max LP Problems with Constraints of
the Form ≤ . 93
6.2.1 Introduction . 93
6.2.2 Slack Variables . 93
6.2.3 The Method . 95
6.2.4 Summary . 99
6.2.5 Keywords . 100

6.3 The Dual: Minimization with Problem Constraints of the
Form ≥ . 101
6.3.1 How It Works . 101
6.3.2 Why It Works . 102
6.3.3 Keywords . 103

6.4 The Big MMethod: Max/Min LP Problems with Varying
Constraints . 103
6.4.1 Maximization Problems with the Big M Method . . . 103
6.4.2 Minimization Problems with the Big M Method . . . 106

6.5 Degeneracy and Cycling in the Simplex Method 108
6.6 Exercises . 109

7 Sensitivity Analysis 112
7.1 Motivation . 112
7.2 An Excel Example . 112

7.2.1 Solver’s Answer Report 114
7.2.2 Solver’s Sensitivity Report 115

7.3 Exercises . 120

8 Integer Linear Programming 121
8.1 Introduction . 121
8.2 Dakin’s Branch and Bound 122
8.3 Gomory Cut-Planes . 128
8.4 For Further Study . 132
8.5 Exercises . 132

III Nonlinear (Geometric) Programming 135

9 Calculus Review 137
9.1 Derivatives and Continuity 137
9.2 Taylor Series for Functions of a Single Variable 141
9.3 Newton’s Method . 144
9.4 Vectors . 144
9.5 Partial Derivatives . 146
9.6 The Taylor Series of a Function of Two Variables 148
9.7 Exercises . 150

viii Contents

10 A Calculus Approach to Nonlinear Programming 153
10.1 Using Derivatives to Find Extrema of Functions of a Single

Variable . 153
10.2 Calculus and Extrema of Multivariable Functions 156
10.3 Exercises . 160

11 Constrained Nonlinear Programming: Lagrange Multipliers
and the KKT Conditions 162
11.1 Lagrange Multipliers . 162
11.2 The KKT Conditions . 164
11.3 Exercises . 166

12 Optimization Involving Quadratic Forms 168
12.1 Quadratic Forms . 168
12.2 Definite and Semidefinite Matrices and Optimization 169
12.3 The Role of Eigenvalues in Optimization 170
12.4 Keywords . 173
12.5 Exercises . 173

13 Iterative Methods 175
13.1 Newton’s Method for Optimization 175

13.1.1 Single-Variable Newton’s Method for Optimization . . 175
13.1.2 Multivariable Newton’s Method for Optimization . . . 176

13.2 Steepest Descent (or Gradient Descent) 181
13.2.1 Generalized Reduced Gradient 184

13.3 Additional Geometric Programming Techniques 185
13.4 Exercises . 185

14 Derivative-Free Methods 187
14.1 The Arithmetic Mean-Geometric Mean Inequality (AGM) . . 187
14.2 Weight Finding Algorithm for the AGM 192
14.3 The AGM, Newton’s Method, and Reduced Gradient

Compared . 195
14.4 Exercises . 195

15 Search Algorithms 197
15.1 Evolutionary Algorithms . 197
15.2 Ant Foraging Optimization 204

IV Convexity and the Fundamental Theorem of
Linear Programming 207

16 Important Sets for Optimization 209
16.1 Special Linear Combinations 209
16.2 Special Sets . 210
16.3 Special Properties of Sets . 214

Contents ix

16.4 Special Objects . 218
16.5 Exercises . 219

17 The Fundamental Theorem of Linear Programming 221
17.1 The Finite Basis Theorem 221
17.2 The Fundamental Theorem of Linear Programming 223
17.3 For Further Study . 224
17.4 Exercises . 224

18 Convex Functions 226
18.1 Convex Functions of a Single Variable 226
18.2 Concave Functions . 233
18.3 Graphs of Convex and Concave Functions 234
18.4 Multivariable Convex Functions 237
18.5 Mathematical Results from Convexity 244
18.6 Exercises . 248

19 Convex Optimization 251
19.1 Convex Optimization and Applications 251
19.2 Duality . 254
19.3 Subgradient Descent . 258
19.4 Exercises . 262

V Combinatorial Optimization 265

20 An Introduction to Combinatorics 267
20.1 Introduction . 267
20.2 The Basic Tools of Counting 268

20.2.1 When We Add, Subtract, Multiply, or Divide 268
20.2.2 Permutations and Combinations 270

20.3 The Binomial Theorem and Binomial Coefficients 273
20.3.1 Pascal’s Triangle . 273
20.3.2 Binomial Coefficients 274
20.3.3 The Binomial Theorem 274
20.3.4 Another Counting Argument 277
20.3.5 The Multinomial Theorem 277

20.4 Counting When Objects Are Indistinguishable 278
20.4.1 Permutations with Indistinguishable Objects 278
20.4.2 Summary of Basic Counting Techniques 280

20.5 The Pigeonhole Principle . 281
20.6 Exercises . 283

x Contents

21 An Introduction to Graph Theory 285
21.1 Basic Definitions . 285
21.2 Special Graphs . 289

21.2.1 Empty Graphs and the Trivial Graph 289
21.2.2 Walks, Trails, Paths, and Cycles 289
21.2.3 Trees . 290
21.2.4 Complete and Bipartite Graphs 291

21.3 Vertex and Edge Cuts . 293
21.3.1 Graph Connectivity 294
21.3.2 Notation for Removing a Vertex or Edge from a Graph 294
21.3.3 Cut Vertices and Vertex Cuts 295
21.3.4 Edge Cuts and Bridges 298

21.4 Some Useful and Interesting Results 299
21.5 Exercises . 301

22 Network Flows 303
22.1 Basic Definitions . 303
22.2 Maximum Flows and Cuts 305
22.3 The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm 309
22.4 Max Flow as a Linear Programming Problem 318
22.5 Application to a Major League Baseball Pennant Race . . . 320
22.6 Exercises . 323

23 Minimum-Weight Spanning Trees and Shortest Paths 325
23.1 Weighted Graphs and Spanning Trees 325
23.2 Minimum-Weight Spanning Trees 326

23.2.1 Kruskal’s Algorithm 328
23.2.2 Prim’s Method . 331
23.2.3 Kruskal’s and Prim’s Compared 333

23.3 Shortest Paths . 333
23.3.1 Dijkstra’s Algorithm 334
23.3.2 A Linear Programming Approach to Shortest Paths . 337

23.4 Exercises . 340

24 Network Modeling and the Transshipment Problem 342
24.1 Introduction of the Problem 342
24.2 The Guarantee of Integer Solutions in Network Flow Problems 347
24.3 Exercises . 350

25 The Traveling Salesperson Problem 351
25.1 History of the Traveling Salesperson Problem 351
25.2 The Problem . 353
25.3 Heuristic Solutions . 353

25.3.1 Nearest Neighbor . 354
25.3.2 Insertion Algorithms 359
25.3.3 The Geometric Heuristic 369

Contents xi

25.4 For Further Study . 370
25.5 Exercises . 371

VI Optimization for Data Analytics and Machine
Learning 373

26 Probability 375
26.1 Introduction . 375
26.2 Set Theory . 376

26.2.1 The Vocabulary of Sets and Sample Spaces 376
26.2.2 The Algebra of Sets 377

26.3 Foundations of Probability 379
26.3.1 Borel Sets . 379
26.3.2 The Axioms and Basic Properties of Probability . . . 379

26.4 Conditional Probability . 382
26.4.1 Naive Probability . 382
26.4.2 Conditional Probability 383
26.4.3 Bayes’ Theorem . 384
26.4.4 Independence . 388

26.5 Random Variables and Distributions 389
26.5.1 Random Variables . 389
26.5.2 Probability Mass and Probability Density Functions . 390
26.5.3 Some Discrete Random Variable Probability

Distributions . 394
26.6 Exercises . 397

27 Regression Analysis via Least Squares 398
27.1 Introduction . 398
27.2 Formulation . 398
27.3 Linear Least Squares . 399

27.3.1 Pseudo-Inverse . 401
27.3.2 Brief Discussion of Probabilistic Interpretation 402

27.4 Regularized Linear Least Squares 403

28 Forecasting 404
28.1 Smoothing . 404

28.1.1 Exponential Smoothing 405
28.1.2 Trends . 405
28.1.3 Seasonality . 406

28.2 Stationary Data and Differencing 407
28.2.1 Autocorrelation . 408

28.3 ARIMA Models . 409
28.3.1 Autoregressive Models 410
28.3.2 Moving Average Models 411
28.3.3 ARIMA Model Structure 411

28.4 Partial . 412

xii Contents

28.4.1 Goodness-of-Fit Metrics 413
28.5 Exercises . 413

29 Introduction to Machine Learning 415
29.1 Introduction . 415
29.2 Nearest Neighbors . 415
29.3 Support Vector Machines . 416
29.4 Neural Networks . 417

29.4.1 Artificial Neural Networks 417
29.4.2 Exercises . 418

A Techniques of Proof 420
A.1 Introduction to Propositional Logic 420
A.2 Direct Proofs . 424
A.3 Indirect Proofs . 424

A.3.1 Proving the Contrapositive 424
A.3.2 Proof by Contradiction 425

A.4 The Principle of Mathematical Induction 426
A.5 Exercises . 429

B Useful Tools from Analysis and Topology 430
B.1 Definitions . 430
B.2 Useful Theorems . 432

Bibliography 433

Index 439

Acknowledgments

To love gone sour, suspicion, and bad debt.
– The Clarks

Also, to my immediate family for the support as I hid in the basement work-
ing on this book, and to my extended family – especially my parents – for
their hard work, sacrifice, and support through all the years in giving me a
great education and continually encouraging me along the way. You all have
optimized the quality of my life.

xiii

http://taylorandfrancis.com

List of Figures

2.1 The graph of f(x) = 1
x , where x > 0. 10

3.1 The growth of functions. 22

4.1 Example 4.1.1 – bounded solution set. 31
4.2 Example 4.1.2 – unbounded solution set. 31
4.3 Example 4.1.3 – bounded solution set. 32
4.4 Example 4.1.4 – empty solution set. 32

6.1 Feasible region for Lincoln Outdoors. 89
6.2 Graphs of the objective function for Lincoln Outdoors. . . . 90
6.3 The multiple integer solutions for Lincoln Outdoors. 92

7.1 The Lincoln Outdoors problem in Excel. 113
7.2 An Excel solution for Lincoln Outdoors. 113
7.3 Options in Excel’s solution for Lincoln Outdoors. 114
7.4 Report options displayed in Excel’s solution for Lincoln

Outdoors. 114
7.5 The answer report for Lincoln Outdoors. 115
7.6 The sensitivity report for Lincoln Outdoors. 116
7.7 Solution changes for different A in the objective function P =

Ax1 + 90x2 with Lincoln Outdoors. 117
7.8 The limits report for Lincoln Outdoors. 118

8.1 Feasible region for Anna’s tables. 125
8.2 Feasible region for Anna’s tables after Branch 1 cut. 126
8.3 Feasible region for Anna’s tables after Branch 4 cut. 126
8.4 Feasible region for Anna’s tables after Branch 5 cut. 127

9.1 The discontinuous function in Example 9.1.3. 138
9.2 A case illustrating Rolle’s theorem. 139
9.3 Illustrating the mean value theorem. 140
9.4 f(x) = x2 + 3 and its tangent line at x = 1. 142
9.5 The vector ⟨3, 2⟩ drawn in standard position. 145

10.1 f(x) = 1
4x

4 − 1
2x

2 + 1 in Example 10.1.6. 155

xv

xvi List of Figures

10.2 Level curves z = 1, 2, 3, 4 on the surface of
f(x, y) =

√
x2 + y2. 156

10.3 ∇f(1, 1) pointing in the direction of the greatest increase out
of (1, 1, 1

2) in Example 10.2.3. Here the y axis runs left-right
and the x axis is coming out of the page. 157

10.4 A saddle point from Example 10.2.8. 160

11.1 Minimizing the radius in Example 11.2.2. 166

13.1 f(x) = 1
7x

7 − 3x5 + 22x3 − 80x in Example 13.1.2. 177
13.2 f(x, y) = x2 + y2 − 2x− 4y + 4 in Example 13.1.4. 178

13.3 f(x, y) = e−(x2+y2) in Example 13.1.6. 179

15.1 Maximum fitness over time by crossover and mutation
strategy. 200

15.2 Maximum fitness over time by selection strategy. 201

16.1 The affine hull of S in Example 16.2.2. 211
16.2 The convex hull of S in Example 16.2.2. 212
16.3 Relationship among affine, conical, and convex hulls and sets. 215

17.1 The region F in Example 17.1.4. 222

18.1 f(x) = x2 with line segment from x = −1 to x = 2 in Example
18.1.2. 227

18.2 f(x) = x2 with tangent line 4x− 4 at the point (2, 4). 229
18.3 f(x) = −x2 with line segment from x = −1 to x = 2 in

Example 18.2.2. 234
18.4 The epigraph of f(x) = x4 − 3x3 − 3x2 + 7x+ 6. 235
18.5 The epigraph of f(x) = sinx. 235
18.6 The hypograph of f(x) = −x2. 236
18.7 f(x) = x1

2 + x2
2. 237

18.8 f(x) = x1
2 + x2

2 and tangent hyperplane at (2, 1). 240
18.9 Strictly convex h(x1, x2) = 2x1

2+x2
2− lnx1x2 from Example

18.4.11. 244

21.1 A cycle and Hamiltonian cycle. 290

22.1 A network with a capacity function. 304
22.2 A network with edge capacities and flows. 305
22.3 The cut U = {s, a} in the network N 306
22.4 A u− v semipath P from a network. 310
22.5 An augmenting semipath sadft. 311
22.6 After augmenting the flow on semipath sadft. 311
22.7 Second run of DEKaFF results through augmenting the flow

on semipath sadgt. 317

List of Figures xvii

22.8 Design of the network for the baseball elimination problem
(all edges are forward edges). 322

22.9 Determining if the Mets are eliminated in the 1992 NL East
Pennant race. 323

23.1 Finding a shortest path in D. 334
23.2 Flow constraints (f) for a shortest path in D. 338
23.3 The Excel setup for an LP solution for finding the distance in

Example 23.3.4. 338
23.4 Using Solver for an LP solution for finding the distance in

Example 23.3.4. 339
23.5 Excel’s solution for an LP modeling of distance in Example

23.3.4. 339
23.6 Weighted graph G for Exercises 23.2, 23.3, 23.4, 23.5. 340
23.7 Weighted graph H for Exercises 23.6, 23.7, 23.8, 23.9. 341

24.1 The Excel setup for Jamie’s SunLov’d Organic Oranges. . . 345
24.2 Excel’s SUMPRODUCT in Jamie’s SunLov’d Organic

Oranges. 346
24.3 Constraints in Jamie’s SunLov’d Organic Oranges. 346
24.4 Optimal distribution for Jamie’s SunLov’d Organic Oranges. 347

25.1 Hamilton’s Icosian game. 352
25.2 Sample start. 352
25.3 The platonic solid: Dodecahedron. 352
25.4 A weighted K5. 357
25.5 Choices leaving A. 357
25.6 First edge selection. 357
25.7 Choices leaving D. 358
25.8 Second edge selection. 358
25.9 Reaching vertex E. 358
25.10 Resulting tour. 358
25.11 Leaving the start E. 359
25.12 2nd step out of E. 359
25.13 Nearest neighbor algorithm’s tour for Example 25.3.2, but

starting out of E. 359
25.14 The weighted future world graph with start at R in Example

25.3.3. 361
25.15 Future world closest insertion iteration 2 in Example 25.3.3. 361
25.16 Future world closest insertion iteration 3 in Example 25.3.3. 362
25.17 Future world closest insertion iteration 4 in Example 25.3.3. 363
25.18 Future world closest insertion final tour in Example 25.3.3. . 364
25.19 Weighted future world graph with start at R and 1st insertion

in Example 25.3.4. 365
25.20 Future world cheapest insertion iteration 2 in Example 25.3.4. 366

xviii List of Figures

25.21 Future world cheapest insertion iteration 3 in Example 25.3.4. 368
25.22 Future world cheapest insertion iteration 4 in Example 25.3.4. 368
25.23 Future world cheapest insertion final tour in Example 25.3.4. 369
25.24 Weighted octahedral graph in Exercise 25.7. 372

B.1 Point A inside a region R, C outside R, and B on the boundary
of R. 431

List of Tables

6.1 Manufacturing Data for Lincoln Outdoors in Example 6.1.1 88
6.2 P (x1, x2) Evaluated at Corner Points 91
6.3 Summary of Applying the Simplex Method to LP Problems 108

7.1 Manufacturing Data for Lincoln Outdoors in Example 6.1.1 113

8.1 LP Branches of Dankin’s Method for Example 8.2.2, ACHF
Tables . 124

9.1 Iterative Values of Newton’s Method for x4−x2−2 with x0 = 2
(Truncated) . 145

13.1 Obtaining Critical Numbers via Newton’s Method in Example
13.1.2 (Truncated) . 176

13.2 Obtaining Critical Numbers via Newton’s Method in Example
13.1.6 (Truncated) . 180

13.3 Obtaining Critical Numbers via Steepest Descent in Example
13.2.2 (Truncated) . 184

15.1 Initial Population to Begin Evolutionary Programming . . . 198
15.2 Crossover and Mutation in the Process of Evolutionary

Programming . 198
15.3 Population with Rank and Selection Probability in

Evolutionary Programming 199
15.4 Population After One Round of Selection in Evolutionary

Programming . 199
15.5 Population of Polynomials 203
15.6 Sample of Evolved Polynomials 204

20.1 Summary of Permutations and Combinations 280

22.1 Possible Edge Cuts in the Network N from Figure 22.2 . . . 308
22.2 Using DEKaFF to Find a First Augmenting Semipath in N

in Figure 22.2 . 312
22.3 Vertex Labels from the First Run through Algorithm 22.3.1 315
22.4 Original Flow, Capacity and Augmentations on Edges in N

from the First Run Through Algorithm 22.3.1 315

xix

xx List of Tables

22.5 Using DEKaFF to Find a Second Augmenting Semipath in N
in Figure 22.6 . 316

22.6 Vertex Labels from the Second Run Through
Algorithm 22.3.1 . 316

22.7 Starting Flow, Capacity and Augmentations on Edges in N
from the Second Run Through Algorithm 22.3.1 317

22.8 Third Search for an Augmenting Semipath in N in
Figure 22.7 . 318

23.1 Edges and Their Weights from Example 23.1.2 326
23.2 Distances (in Miles) Between Sites at Delos Resort in Example

23.2.1 . 327

25.1 Number of Distinct Tours in a Complete Graph with n
Vertices . 354

25.2 Distances (in Miles) Between Themed Parks in Future World
in Example 25.3.1 . 355

A.1 Truth Table for Negation of a Proposition 421
A.2 Truth Table for Conjunction Operator on Propositions . . . 421
A.3 Truth Table for the Disjunction Operator on Propositions . 421
A.4 Truth Table for Conditional Statements 422
A.5 Proof That a Conditional Statement Is Logically Equivalent

to Its Contrapositive . 423
A.6 Truth Table for the Biconditional 423

List of Algorithms

7.2.1 Finding Additional Non-Degenerate LP Solutions Using
Solver. 117

8.2.1 Dakin’s Branch and Bound Algorithm for ILP. 122
8.3.1 Gomory Cuts for ILP. 131
13.2.1 Gradient Descent for Nonlinear Programming. 181
19.3.1 Subgradient Descent for (19.13) 259
19.3.2 Subgradient Descent for Lasso. 261
22.3.1 The Dinitz-Edmonds-Karp-Ford-Fulkerson (DEKaFF)

Algorithm . 313
23.2.1 Kruskal’s Algorithm (1956) for Finding a Minimum Weight

Spanning Tree. 328
23.2.2 Prim’s Method (1957). 331
23.3.1 Dijkstra’s Algorithm to Obtain Shortest Paths. 334
25.3.1 Nearest Neighbor Heuristic for Finding a (Local) Minimum

Weight Tour. 355
25.3.2 Closest Insertion Heuristic for Finding a (Local) Minimum

Weight Tour. 360
25.3.3 Cheapest Insertion Heuristic for Finding a (Local) Minimum

Weight Tour. 364

xxi

http://taylorandfrancis.com

List of Notation

inf(S) infimum of S (greatest lower
bound) 11

sup(S) supremum of S (least upper
bound) 11

O(g) g is an asymptotic upper bound
(‘Big O notation’) 19

AT transpose of a matrix A . . . 37
Rm×n the collection of matrices with

entries from R with m rows
and n columns 37

||x|| magnitude of vector x 38
Aij ijth minor matrix of A 41
A′

ij ijth cofactor of matrix of A . 42
det(A) determinant of matrix A . . . 42
Ai matrix formed by replacing ith

column of A with b in Ax = b 44
||v||1 ℓ1 vector norm 46
||v||2 ℓ2 or Euclidean vector norm . 46
||v||∞ ℓ∞ vector norm 46
||A||1 ℓ1 matrix norm 47
||A||F Frobenius matrix norm 47
||A||∞ ℓ∞ matrix norm 47
κ(A) condition number of a matrix

A 50
Hn nth Hilbert matrix 51
span(v1,v2, . . .vn) the set of all linear combina-

tions of {v1,v2, . . .vn} . . . 53
dim(V) dimension of a vector space V 53
col(A) column space of a matrix A . 54
row(A) row space of a matrix A . . . 54
null(A) null space of a matrix A . . . 54
rank(A) rank of matrixA = dim(row(A))

= dim(col(A)) 55
nullity(A) the dimension of the null space

of A 55

xxiii

xxiv List of Notation

GLn(Z) general linear group of matri-
ces 59

Tn(x) nth order Taylor polynomial 141
Rn(x) remainder of Tn(x) 142

fx = fx(x, y) =
∂f(x,y)

∂x = ∂
∂xf(x, y) partial derivative of f(x,y) with

respect to x 146

fy = fy(x, y) =
∂f(x,y)

∂y = ∂
∂yf(x, y) partial derivative of f(x,y) with

respect to y 146
∇f(x, y) gradient of f(x,y) 147
Hf Hessian of f(x1, x2, . . . , xn) . 147
L(S) linear hull (or linear span) of a

set S 210
aff(S) affine hull of a set S 210
coni(S) conical hull of a set S 210
conv(S) convex hull of a set S 210
H(c, b) hyperplane 218
A+B sumset 221
epi(f) epigraph of f(x); i.e. all points

above the graph of f(X) . . . 235
hypo(f) hypograph of f(x); i.e. all

points below the graph of f(X) 236
||x||p p norm 246
R++ the set of positive real numbers

(0,∞) 248
R+ the set of nonnegative real

numbers [0,∞) 248
n! factorial function n! = n(n −

1)(n− 2) · · · 3 · 2 · 1 with 0! := 1 268
P (n, r) the number of r-permutations

from a set of n objects without
repetition 270

C(n, r) the number of r-combinations
from a set of n objects without
repetition 271(

n
r

)
binomial coefficient = C(n,r) 274(

n
n1,n2,...,nm

)
multinomial coefficient 277

⌈r⌉ ceiling of r; the smallest inte-
ger k ≥ r 282

deg−(u) in-degree of a vertex u 287
deg+(u) out-degree of a vertex u . . . 287
Pn path of order n 289
Cn cycle of order n 289
Kn complete graph of order n . . 291
Ks,t complete bipartite graph with

partite sets of order s and t . 292

List of Notation xxv

κ(G) (vertex) connectivity of a graph
G 296

λ(G) edge connectivity of a graph G 298
⌊r⌋ floor of r; the greatest integer

k ≤ r 299
f+(u) total flow out of vertex u . . 304
f−(u) total flow into vertex u 304
val(f) value of the flow f in a network 305
[U,U] cut in a network 305
cap(K) capacity of a cut K in a net-

work 306
f+(U) total flow out of the vertices in

the set U 306
f+(U) total flow into the vertices in

the set U 306
d(u, v) distance between vertices u

and v in a graph G 333
s ∈ S s is an element of S 376
∅ empty or null set 377
A ∪B union of sets A and B 377
A ∩B intersection of sets A and B . 377
Sc = S̄ complement of set S 378
¬p negation of the proposition p 421
p ∧ q conjunction of the propositions

p and q 421
p ∨ q disjunction of the propositions

p and q 421
p→ q the conditional statement p

implies q 422
p ⇐⇒ q biconditional (p → q) ∧ (q →

p) 423
||x− y|| Euclidean distance 430
Nϵ(x) ϵ-neighborhood 430
int(R) interior of R 430
ext(R) exterior of R 430

http://taylorandfrancis.com

Part I

Preliminary Matters

http://taylorandfrancis.com

1

Preamble

1.1 Introduction

As a subject, optimization can be admired because it reaches into many dif-
ferent fields. It borrows tools from statistics, computer science, calculus (anal-
ysis), numerical analysis, graph theory, and combinatorics as well as other
areas of mathematics. It has applications in economics, computer science and
numerous other disciplines as well as being incredibly useful outside academics
(this is an understatement!). Its techniques were at the heart of the first spam
filters, are used in self-driving cars, play a great role in machine learning and
can be used in such places as determining a batting order in a Major League
Baseball game. Additionally, it has seemingly limitless other applications in
business and industry. In short, knowledge of this subject offers an individual
both a very marketable skill set for a wealth of jobs as well as useful tools for
research in many academic disciplines.

1.2 Software

Even though much of this text has problems that rely on using a computer, I
have stayed away from emphasizing any one particular software. Microsoft’s
Excel is most often used as this is common in business, but Python and other
languages are considered. There are two reasons for this:

1. Software changes.

2. In a typical Introduction to Optimization class in the Mathematics Depart-
ment at the University of Pittsburgh, I get students from Mathematics,
Engineering, Economics, Computer Science, Statistics, and Business and
these students come to the class with different computer experience. I do
assign problems that involve using a computer, but I never require using
a particular software and this has been very rewarding; especially during
student presentations. The reason for this is we all get to experience the

DOI: 10.1201/9780367425517-1 3

https://doi.org/10.1201/9780367425517-1

4 Preamble

Mathematics and Engineering students using MatLab or Mathematica,
the Economics and Business majors using Excel, and the Computer Sci-
ence students writing their own programs in Java or Python. In short, we
all see different ways to do similar problems and are each richer for seeing
the different processes.

1.3 About This Book

1.3.1 Presentation

This book is a sampling of optimization techniques and only touches on the
surface of each. Most of the chapters in this book could be developed into
their own texts, but rather than be an expert exposition on a single topic,
my colleagues and I have sought to create a buffet from which students and
faculty may sample what they wish. Additionally, we have attempted to offer
a healthy combination of applications of techniques as well as some of the
underlying mathematics of the techniques. This latter goal may have caused
us to lose some readers: “Oh, no, this is going to be dry, boring, and soulless. I
just want to know how to solve problems”. If this is you, please be patient with
us and join us on our journey. We believe that even the smallest understanding
of the theory enables one to be a better problem solver and, more importantly,
provides one with the tools to effectively diagnose what is not working and
which direction to head when the technique fails to work in a particular setting.
Others will see this as a poser for a proper mathematics text. There is some
truth to this assessment and to those individuals I recommend any one of the
many excellent mathematical texts referenced in this work. To the many that
may regard the majority of the presentations in this work as not proper or
formal enough, I quote a New Yorker article on the superb mathematician
Alexander Grothendieck:

“Grothendieck argued that mathematicians hide all of the discovery pro-
cess, and make it appear smooth and deductive. He said that, because of this,
the creative side of math is totally misunderstood.” [28]

1.3.2 Contents

The structure of the text is such that most chapters and even some sections
can be read independently. A refresher, for example, on Taylor’s Theorem for
multivariable functions or a crash course on matrix factorization can be easily
done by finding the appropriate section in the text.

This text grew out of notes for the class Mathematical Models for Con-
sultants I taught three times for the Tepper School of Business at Carnegie

About This Book 5

Mellon University, Applied Optimization and Simulation, I have taught for the
Katz College of Business Administration at the University of Pittsburgh, and
my Introduction to Optimization class offered regularly in the Department
of Mathematics at the University of Pittsburgh. I have taught undergradu-
ate and graduate versions of the class more than a dozen times so far for
our department and have even had colleagues attend the course. In a typical
semester of my math class, I try to cover Linear Programming, Integer Linear
Programming, multiple Geometric Programming techniques, the Fundamental
Theorem of Linear Programming, transshipment problems, minimum-weight
spanning trees, shortest paths, and the Traveling Salesperson Problem as well
as some other topics based upon student interest. My goal for the math class
at Pitt is to provide a skill set so that our majors can get a job after gradu-
ating, but the course – as previously stated – has ended up attracting many
students with diverse backgrounds including Engineering, Computer Science,
Statistics, Economics, and Business. This mix of student interests explains the
structure of the text: a smorgasbord of topics gently introduced with deeper
matters addressed as needed. Students have appreciated sampling different
dishes from the buffet, and the ones that wanted to dig further were asked to
do a little research on their own and give a short presentation. Some extra
credit was used as the carrot to motivate them, but the true reward was much
greater. All of us in the audience were treated with learning something new,
but the student presenter’s true reward was the realization that they had the
ability to learn on their own (and show an employer that they can give a great
presentation). The educator in me has found this to be the most rewarding
of all the classes I teach; feeling that same satisfaction of watching my child
happily ride a bike for the first time.

As such, I would change nothing about the structure of this text. It prob-
ably has too much mathematics for some and not enough mathematics for
others, but that is exactly where I want the text to be. I have taught college
mathematics for over 30 years and taught a wide range of courses at differ-
ent levels. I receive many thank you cards, but I get the most from students
that took this course; usually because of the job they have secured because
of what they learned in this class. I have also had many students continue to
graduate school in a wide range of areas, but none more than in some version
of Optimization. Numerous students have obtained interesting jobs as well,
including working on self-driving cars, doing analysis for a professional sports
team, and being a contributing member of the discussion on how to distribute
the first COVID vaccine during the pandemic. In short, this approach to the
material has worked very well and given the subject’s utility, it is the right
time for an undergraduate-level survey text in the material. I hope you enjoy
the journey through the material as much as I and my students have.

6 Preamble

1.4 One-Semester Course Material

Much of this book is not covered in a typical one-semester course that I teach.
In a typical one-semester course, I cover

• Linear Programming (Chapter 6)
• Integer Linear Programming (Chapter 8)
• Geometric Programming, specifically Chapters 11, 14, and 13
• affine, conical, and convex sets as well as the Fundamental Theorem of
Linear Programming (Chapters 16 and 17)

• an introduction to Graph Theory (the first two sections of Chapter 21)
• minimum weight spanning trees, shortest paths, networks, and transship-
ment problems, as well as the Traveling Salesperson Problem (Chapters
23, 24, and 25)

and we will mention

• complexity (Chapter 3) and
• sensitivity analysis (Chapter 7)

and spend some time in these chapters if we need to. We also explore other
topics if time permits.

I never cover the Algebra, Matrix Factorization, Calculus, or Combina-
torics chapters, but often many of my students need a refresher of these top-
ics or a short introduction. Note also that though matrix factorization and
matrix norms other than the Euclidean norm are not used later in the text,
though they are important matters to consider if one wants to discuss using a
computer to solve important problems. Sometimes, also, these topics come up
in class discussions and many students need to know this material for what
analytical work they have done after taking the class. In a very real sense this
book is less of a textbook and more of a handbook of optimization techniques;
the mathematics, computer science, and statistics behind them; and essential
background material. As my class draws not just math majors but students
from across campus, and having resources of necessary review materials has
been key to many of my students’ success.

1.5 Acknowledgments

This book would not have been possible without significant contributions from
talented professionals with whom I have had the privilege to work in some ca-
pacity. I am quite pleased to share that most on this list are former optimiza-
tion students, and all of the contributors have written from their professional

Acknowledgments 7

expertise. Arranged by chapter, contributors of all or most of the material in
particular chapters to the text are:

• Complexity Classes – Graham Zug (Software Engineer, Longpath Tech-
nologies)

• Genetic Algorithms – Andy Walsh, Ph.D. (Chief Science Officer, Health
Monitoring)

• Convex Optimization – Jourdain Lamperski, Ph.D. (Pitt Department of
Industrial Engineering)

• Traveling Salesperson Problem – Corinne Brucato Bauman (Assistant Pro-
fessor, Allegheny Campus, Community College of Allegheny County)

• Probability – Joseph Datz (former analyst for the Pittsburgh Pirates; In-
stitute Grant, Research, and Assessment Coordinator, Marywood Univer-
sity) and Joseph “Nico” Gabriel (Research Analyst 2, Skaggs School of
Pharmacy and Pharmaceutical Sciences at the University California San
Diego).

• Regression Analysis via Least Squares – John McKay (Research Scientist
at Amazon Transport Science) with contributions from Suren Jayasuria
(Assistant Professor Arts, Media and Engineering Departments, Arizona
State University)

• Forecasting – Joseph “Nico” Gabriel (Research Analyst 2, Skaggs School
of Pharmacy and Pharmaceutical Sciences at the University of California,
San Diego).

• Intro to Machine Learning – Suren Jayasuria, Ph.D. (Assistant Professor
Arts, Media and Engineering Departments, Arizona State University) with
contributions from John McKay (Research Scientist at Amazon Transport
Science).

Memphis student and former AMS Senior Editor Avery Carr shared his
expert LATEX editing skills and saved me from agonizing over details I would
have to work to understand. Avery also served as a guest editor for the won-
derful 100th Anniversary Edition ΠΜΕ Problems Edition. Pitt student Evan
Hyzer also edited and solved many LATEX mysteries for me. Special apprecia-
tion is to be extended to Mohd Shabir Sharif for his extended edits increasing
the quality of the text.

Distinguished University Professor Tom Hales of the Department of Math-
ematics at the University of Pittsburgh was kind enough to read an early
version of the text and offer incredibly helpful feedback.

Additionally, Joseph Datz contributed a large number of wonderful exer-
cises throughout the various topics in the text. Former student Graham Zug
contributed homework problems and also kindly proofread. The contributors
are all former students except Andy Walsh and John McKay (who was a
student at Pitt, but never took any of my classes).

My wife and children are to be thanked for tending to home matters and
allowing me to disappear to my basement lair undisturbed for hours on end,
many days and nights in a row.

8 Preamble

Those deserving my greatest appreciation, though, are the many students
that endured the evolution of the notes that eventually became this book.
They also had to withstand all the classes where I often poorly pieced together
seemingly unrelated material. I have been blessed with terrific students who
have been open to discussion and exploration as well as being eager to learn.
They have molded this material, contributed to its content, and made the
journey to this point most enjoyable. Thank you all.

– Jeffrey Paul Wheeler, University of Pittsburgh

2

The Language of Optimization

2.1 Basic Terms Defined

It is most likely the case that anyone reading a book such as this is famil-
iar with basic definitions of what we are studying, yet it is worthwhile in a
mathematical context to offer formal definitions.

Definition 2.1.1 (Maximizer, Maximum). Let f : D → R where the domain
D of f is some subset of the real numbers1

• global (or absolute) maximizer of f(x) over D if f(x∗) ≥ f(x) for all
x ∈ D;
• strict global (or strict absolute) maximizer of f(x) over D if f(x∗) > f(x)
for all x ∈ D with x ≠ x∗;
• local (or relative) maximizer of f(x) if there exists some positive number
ϵ such that f(x∗) ≥ f(x) for all x, where x∗− ϵ < x < x∗+ ϵ (i.e. in some
neighborhood of x∗);
• strict local (or strict relative) maximizer of f(x) if there exists some pos-
itive number ϵ such that f(x∗) > f(x) for all x, where x∗− ϵ < x < x∗ + ϵ
with x ≠ x∗.

The f(x∗) in the above is, respectively, the global (or absolute) maximum,
strict global (or absolute) maximum, local (or relative) maximum, or strict
local (or relative) maximum of f(x) over D.

It is important to understand the difference between a maximizer and a
maximum.

Highlight 2.1.2. The maximum f(x∗) is the optimal value of f which, if
the optimal value exists, is unique. The maximizer x∗ is the location of the
optimal value, which is not necessarily unique.

A slight change in detail will lead to another important concept:

Definition 2.1.3 (Minimizer, Minimum). Let f : D → R where D ⊆ R. A
point x∗ in D is said to be a

1It should be noted that we have no need to restrict ourselves to the reals and could
offer the definition in a more abstract field.

DOI: 10.1201/9780367425517-2 9

https://doi.org/10.1201/9780367425517-2

10 The Language of Optimization

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

FIGURE 2.1
The graph of f(x) = 1

x , where x > 0.

• global (or absolute) minimizer of f(x) over D if f(x∗) ≤ f(x) for all
x ∈ D;
• strict global (or absolute) minimizer of f(x) over D if f(x∗) < f(x) for
all x ∈ D with x ̸= x∗;
• local (or relative) minimizer of f(x) if there exists some positive number
ϵ such that f(x∗) ≤ f(x) for all x, where x∗ − ϵ ≤ x ≤ x∗ + ϵ;
• strict local (or relative) minimizer of f(x) if there exists some positive
number ϵ such that f(x∗) < f(x) for all x, where x∗− ϵ < x < x∗ + ϵ with
x ≠ x∗.

The f(x∗) in the above is, respectively, the global (or absolute) minimum),
strict global minimum, local (or relative) minimum, or strict local (or rela-
tive) minimum of f(x) over D.

Note that the plural form of maximum is maxima and that the plural form
of minimum is minima. Together the local and global maxima and minima of
a function f(x) are referred to as extreme values or extrema of f(x). A single
maximum or minimum of f(x) is called an extreme value or an extremum of
the function.

We also note that the stated definitions of maximum and minimum are for
functions of a single variable, but the definitions2 are the same for a function
of n variables except that D ⊆ Rn and x∗ = ⟨x∗

1, . . . , x
∗
n⟩ would replace x∗.

2.2 When a Max or Min Is Not in the Set

Consider the function f(x) = 1
x where x > 0. Certainly f(x) is never 0 nor

is it ever negative (the graph of f(x) is in Figure 2.1); thus for all x > 0,
f(x) > m where m is any nonpositive real number. This leads to the following
collection of definitions:

2There is some concern with how the ϵ interplays with the x1, . . . , xn, but the overall
idea is the same.

Solving an Optimization Problem 11

Definition 2.2.1 (Upper and Lower Bounds). Let f be a function mapping
from a set D onto a set R where R is a subset of the real numbers. If there
exists a real number M such that f(x) ≤ M for all x in D, then f is said to
be bounded from above. Likewise, if there exists a real number m such that
f(x) ≥ m for all x in D, then f is said to be bounded from below. M is called
an upper bound of f whereas m is called a lower bound of f .

Example 2.2.2. The function f(x) = 1
x is bounded below by m = 0 as well

as by m = −1. The function is unbounded from above.

Note that if a function is both bounded above and bounded below, then
the function is said to be a bounded function; that is

Definition 2.2.3 (Bounded Function). If there exists a constant M such
that |f(x)| ≤ M for all x in the domain of f , then f is said to be a bounded
function. If no such M exists, then f is said to be unbounded.

Example 2.2.4. Since | sinx| ≤ 1 for any real number x, sinx is a bounded
function.

Let us now reconsider f in Example 2.2.2 and observe that f : D → R
where D = (0,∞) = R. As previously observed, f(x) > 0 for all x in D, but
0 is not in R. As we can find x that get us as arbitrarily close to 0 as we like,
f does not have a minimum, but 0 still plays a special role.

Definition 2.2.5 (Infimum, Supremum). Let S be a nonempty subset of R.
Then b is said to be the infimum of S if b ≤ s for all s ∈ S and b ≥ m for any
lower bound m of S. The infimum of a set is the greatest lower bound of the
set and is denoted b = inf(S). Likewise, a is said to be the supremum of S if
a ≥ s for all s ∈ S and a ≤ M for any upper bound M of S. The supremum
of a set is the least upper bound of the set and is denoted a = sup(S).

It will come as no surprise that the infimum is also often called the greatest
lower bound (glb), and the supremum is referred to as the least upper bound
(lub). When an infimum or supremum exists, it is unique. As well, the plural
of supremum is suprema and infimum has infima as its plural.

Example 2.2.6. For f in Example 2.2.2, min f does not exist, but for the
codomain R+ (the set of positive real numbers), inf R = 0.

Thus we see that the infimum (when it exists) can play a role similar to
a minimum when a minimum does not exist. An analogous statement can be
said of maxima and suprema.

2.3 Solving an Optimization Problem

By “solving” algebraic equations like

2x2 + 2x+ 5 = 9 (2.1)

12 The Language of Optimization

we mean “finding the particular values of x that satisfy equation 2.1” (they
are −2 and 1). In another circumstance, we may be interested in what a lower
bound of the polynomial 2x2 + 2x + 5 is (this solution is 9/2 or anything
smaller).

But when solving an optimization problem, we always mean a little more
than just some numeric value. For example, consider the classic algebra prob-
lem of a farmer having 1000 feet of fence and wanting to know what is the
biggest area he can enclose with a rectangular pen for his livestock if he builds
the pen adjacent to his barn (big enough that he only needs fence on three
sides). If we label the side parallel to the barn y and the other two sides x,
then the mathematical model of our problem is

Maximize A = A(x, y) = xy (2.2)

Subject to y + 2x = 1000 (2.3)

with x, y ≥ 0. (2.4)

As our goal is to maximize the area, the function representing it, A(x, y),
is called the objective function. As well, the amount of available fence puts a
restriction on the problem, so the corresponding equation y + 2x = 1000 is
called a constraint . As well, we naturally have the nonnegativity constraints
that x, y ≥ 0.

Using the constraint to eliminate a variable, the problem simplifies to

Maximize A(x) = 1000x− 2x2. (2.5)

The maximum of this function is 125,000 square feet, and though our
farmer will appreciate this knowledge, it is certain he also would like to know
what dimensions he needs to make the pen in order to achieve having this
maximum area. Thus, by a solution to an optimization question, we do not
just mean the optimal value of the objective function but also the values
of the variables that give the extreme value. Thus we report the answer as
maxA = 125,000 square feet, which occurs when x = 250 feet and y = 500
feet. We summarize the point of this example in the following Highlight:

Highlight 2.3.1. A solution to an optimization problem is

1. the optimal value of the objective function together with
2. all possible feasible values of the decision variable(s) that yield the optimal

objective value.

2.4 Algorithms and Heuristics

By an algorithm we mean a finite procedure applied to an input with well-
defined steps that are repeated to obtain a desired outcome. For example,

Algorithms and Heuristics 13

consider washing your hair. First you wet your hair, then you apply the sham-
poo and lather, and lastly you rinse. This process may be repeated as many
times as you wish to obtain the desired level of cleanliness (read your shampoo
bottle; it may have an algorithm written on it). In some sense, an algorithm
is a recipe that is repeated.

You may have noticed that we have not offered a formal definition of an
algorithm. We are going to avoid unnecessary formality and potential disputes
and not offer one all the while noting (modifying Justice Potter Stewart’s
words in Jacobellis v. Ohio:) “I may not know how what the definition of
an algorithm is, but I know one when I see it” (Justice Stewart was not
addressing algorithms; decency forbids me addressing the matter of that case).
It is worthwhile to note that the authoritative text on algorithms – Algorithms
[11] by Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, and Clifford
Stein – as well does not define the term algorithm anywhere in its 1312 pages.

Algorithms have been around for a long time. Perhaps in grade school you
learned the Sieve of Eratosthenes (circa 3rd century BCE) to find primes.
Given a finite list of integers, one circles 2 and crosses out all other multiples
of 2. We then proceed to the next available integer, 3, keep it, and cross out
all other multiples of 3. We repeat until every integer in our list is circled or
crossed out, and what remains are the primes that were in our list of numbers.
Algorithms will play a major role in techniques we study iterative methods
and combinatorial optimization.

The word algorithm has a fascinating origin. It comes from the La-
tinized (“Algorithmi”) version of the Persian name Muh.ammad ibn Mūsā
al-Khwārizmı̄ whose early 9th century CE book Al-kitāb al-mukhtas.ar fī h. isāb
al-ğabr wa’l-muqābala (“The Compendious Book on Calculation by Comple-
tion and Balancing”) is the first known systematic treatment of algebra as
an independent subject. Unlike other early works presenting specific problems
and their solution, Al-Khwārizmı̄’s work presents general solution techniques
for first- and second-order equations, including completing the square. Al-
Khwārizmı̄ can be regarded as the father of algebra, and it is from his text
we get the term “algebra” (interestingly, it is also from his name the Spanish
and Portuguese get their words for “digit”; see [64]).

Algorithms may produce a globally optimal solution, as we will see in
the Simplex Method to solve Linear Programming problems and as well in
Kruskal’s Algorithm or Prim’s Method to find minimum weight spanning trees
in a graph. On the other hand, an algorithm may not give a solution but under
the right conditions give a good approximation as in Newton’s Method.

A heuristic is a slightly different monster. A dictionary from before the
days of everyday people being familiar with computers would report that
“heuristic” is an adjective meaning “enabling a person to discover or learn
something for themselves” [15] or “by trial and error” [16]. These days, the
word is also regarded as a noun and is most likely shortened from “a heuristic
method”. When using it as a noun, we mean by heuristic a technique that
is employed when no method of obtaining a solution (either global or local)

14 The Language of Optimization

is known or a known technique takes too long. It is, in a very true sense, an
“educated guess”. Consider the Traveling Salesperson Problem (TSP) which
is introduced in Chapter 25. A salesperson needs to visit a collection of cities
and would like to know how to plan her route to minimize distance driven.
Unfortunately, there does not yet exist a deterministic-polynomial time al-
gorithm to solve this3, nor is it known that it is impossible for one to exist
(P = NP anyone?), so she can instead do what seems like a good idea: drive
to the nearest city and when done with her business there, drive to the nearest
city not yet visited, etc. (this is the Nearest Neighbor Heuristic4 that we will
see later).

2.5 Runtime of an Algorithm or a Heuristic

A very important matter we will need to consider as we solve our problems is
how long it will take a computer to do the work for us. This can be measured
in different ways, either time elapsed or the number of operations a computer
must perform. Seldom do we use time as the standard in this regard as pro-
cessor speeds vary and get faster. The standard is to count operations the
computer must do, but even this is not precise as sometimes we may count
only arithmetic operations performed, but other times we also include calls
to memory, etc. This apparent discrepancy is not a large concern as our goal
when determining the runtime or computational complexity , or simply com-
plexity , of an algorithm, heuristic, or computer program is to approximate
the amount of effort a computer must put forth. The purpose of these calcu-
lations is to compare the runtime efficiency of a given program, algorithm, or
heuristic to other known techniques.

Complexity is worthy of its own chapter and is addressed in Chapter 3.

2.6 For Further Study

Parts of these texts have excellent presentations on what we have considered
and can be used to deepen one’s understanding of the material presented in
this chapter:

3A brute force algorithm that tests all the paths will give the correct answer and
terminate in a finite amount of time. Unfortunately, there are (n − 1)!/2 possible tours
(routes) on n cities, so with 10 cities there are 181,440 possible tours and 20 cities have
60,822,550,204,416,000 possible tours. Hence, though a brute force approach works, we may
not live long enough to see the end of the algorithm.

4We are referencing specifically the algorithm for “solving” the TSP and not the unre-
lated algorithm in Machine Learning.

Keywords 15

• An Introduction to Algorithms, 3rd edition, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein; MIT Press (2009).
(This is the go-to text for many experts when it comes to the study of
algorithms.)

• Graphs, Algorithms, and Optimization, 2nd edition, William Kocay, Don-
ald L. Kreher, CRC Press (2017)

• Mathematical Programming An Introduction to Optimization, Melvyn
Jeter, CRC Press (1986)

• The Mathematics of Nonlinear Programming, A.L. Peressini, F.E. Sullivan,
J.J. Uhl Jr., Springer (1991)

This list is not, of course, an exhaustive list of excellent sources for a
general overview of optimization.

2.7 Keywords

(strict) global or absolute maximizer/minimizer, (strict) local or relative max-
imizer/minimizer, maximum, minimum, infimum, supremum, solution to an
optimization problem, algorithm, heuristic, runtime, (computational) com-
plexity.

2.8 Exercises

Exercise 2.1. State the maximum, minimum, infimum, and supremum (if
they exist) of each of the following sets:

i) A = {8, 6, 7, 5, 3, 0, 9},
ii) B = [a, b), where a, b ∈ R,
iii) C = the range of f(x) = 1/(1− x), where x ̸= 1,
iv) D = the range of g(x) = 1/(1− x)2, where x ̸= 1,

v) E = {1 + (−1)n

n }, where n is a positive integer,
vi) F = the set of prime numbers.

Exercise 2.2. Let f : Rn → R and x∗ = ⟨x∗
1, . . . , x

∗
n⟩ ∈ Rn. Show f(x∗) is a

maximum of f if and only if −f(x∗) is a minimum of −f .

Exercise 2.3. Suppose s1 and s2 are suprema of some set S ⊂ R. Prove
s1 = s2, thus establishing that the supremum of a set is unique (obviously, a
very similar proof shows that, if it exists, the infimum of a set is also unique).

16 The Language of Optimization

Exercise 2.4. Show if S ⊂ R is a nonempty, closed, and bounded set, then
sup(S) and inf(S) both belong to S.

Exercise 2.5. Let f : (0,∞) → R by x 7→ lnx (i.e., f(x) = lnx). Prove
that f is monotonically increasing continuous bijection. [Note: this exercise
assumes some familiarity with topics in Calculus/Elementary Real Analysis.]

Exercise 2.6. Let f be a positive-valued function; that is, its image is a subset
of (0,∞) with D(f) ⊆ R. Prove that f(x∗) = maxx∈D(f){f(x)} if and only if
ln f(x∗) = maxx∈D(f){ln f(x)} (i.e. the max of f and ln f occur at the same
locations). You may use Exercise 2.5.

3

Computational Complexity

3.1 Arithmetic Complexity

Many optimization techniques rely on algorithms – especially using a
computer – and, as such, it is natural to consider how long an iterative pro-
cess may take. As processors’ speeds vary and technology improves, time is
not a good candidate for a metric on “how long”. Instead, one approach is to
count the number of operations necessary to complete the algorithm. This is
illustrated in the following example:

Consider using Gauss-Jordan elimination to solve a system of n equations
in n variables as in the following 3× 3 case with variables x1, x2, and x3 (for
a refresher on this technique, see Section 4.2).

 −2 3 5 7
4 −3 −8 −14
6 0 −7 −15

 2R1+R2→R2−−−−−−−−→
3R1+R3→R3

 −2 3 5 7
0 3 2 0
0 9 8 6

 (3.1)

−3R2+R3→R3−−−−−−−−−−→

 −2 3 5 7
0 3 2 0
0 0 2 6

 (3.2)

We may continue row operations to get the matrix in reduced row echelon
form, but this is computationally expensive1, so we instead back substitute:

2x3 = 6, so x3 = 3; (3.3)

3x2 + 2(3) = 0, thus x2 = −2; and (3.4)

−2x1 + 3(−2) + 5(3) = 7, hence x1 = 1. (3.5)

The process of reducing the matrix but stopping short of reaching reduced row
echelon form and using back substitution is usually referred to as Gaussian
elimination.

1A good lesson to carry with us as we explore the topics in this text is that it is not
always best for a computer to do a problem the same way you and I would solve it on paper.
This matter is briefly discussed at the beginning of Section 5.

DOI: 10.1201/9780367425517-3 17

https://doi.org/10.1201/9780367425517-3

18 Computational Complexity

Counting operations at each step of the Gaussian elimination in our
example on 3 variables we have:

step multiplications additions process

3.1 2(3 + 1) 2(3 + 1) elimination
3.2 1(2 + 1) 1(2 + 1) elimination
3.3 1 0 back substitution
3.4 2 1 back substitution
3.5 3 2 back substitution

If we consider a system with n variables, then the total number of opera-
tions in Gaussian elimination, G(n), is

G(n) := # operations

= # elim mult + # elim add +# back sub mult + # back sub add
(3.6)

=

n∑
i=1

(i− 1)(i+ 1) +

n∑
i=1

(i− 1)(i+ 1) +

n∑
i=1

i+

n∑
i=1

(i− 1) (3.7)

= 2

n∑
i=1

(i2 − 1) + 2

n∑
i=1

i−
n∑

i=1

1 (3.8)

= 2
n(n+ 1)(2n+ 1)

6
− 2n+

n(n+ 1)

2
− n (3.9)

=
(4n3 + 6n2 + 2n)− 12n+ (3n2 + 3n)− 6n

6
(3.10)

=
4n3 + 9n2 − 13n

6
or roughly

2n3

3
. (3.11)

For growing values of n we have

n # operations 2
3n

3 % error

1 0 0.666666 33.3333
2 7 5.333333 23.8095
3 25 18.000000 28.0000
4 58 42.666666 26.4367
5 110 83.333333 24.2424
10 795 666.666666 16.1425
20 5890 5333.333333 9.4510
30 19285 18000.000000 6.6632
40 44980 42666.666666 5.1430
50 86975 83333.333333 4.1870
100 681450 666666.666666 2.1693
500 83707250 83333333.333333 0.4466
103 666816645000 666666666.666666 0.2241
104 666816645000 666666666666.666666 0.0224
105 666681666450000 666666666666666.666666 0.0022
106 666668166664500000 666666666666666666.6666 0.0002

Asymptotic Notation 19

The polynomial in 3.11 gives the number of arithmetic operations required
in n variables with n unknowns. As we see in the table, as n grows large
4n3+9n2−13n

6 is approximated nicely by 2n3

3 thus we say that the arithmetic

complexity of Gaussian elimination is of the order 2n3

3 .
It is important to note that there is much more a computer is doing than

just arithmetic operations when it does a calculation. One very important
process we have ignored in our example is calls to memory and these can
be very expensive. Including all that is involved in memory makes a runtime
assessment much more difficult and often this component is ignored. The
purpose of these calculations is not to get a precise measurement of how long
it will take a computer to complete an algorithm, but rather to get a rough
idea of all that is involved so that we can compare the algorithm to other
techniques that accomplish the same task and therfore have some means to
compare which is more efficient. A thorough treatment of all this can be found
in the excellent textbook [11].

3.2 Asymptotic Notation

As we saw in the example in the previous section, 2n3

3 is a very good approxi-

mation for 4n3+9n2−n
6 as n grows large. This agrees with our intuition that as

n gets big, the only term that really matters in the polynomial is the leading
term. This idea is encapsulated in asymptotic notation (think of “asymptotic”
as a synonym for “long-run behavior”) and, in particular for our purposes, big
O notation.

Definition 3.2.1 (Big O Notation). Let g be a real-valued function (though
this definition also holds for complex-valued functions). Then

O(g) := {f | there exist positive constants C,Nsuch that 0 ≤ |f(x)| ≤ C|g(x)|
for all x ≥ N}.

Thus O(g) is a family of functions F for which a constant times |g(x)| is
eventually an upper bound for all f ∈ F . More formally, f being O(g) means
that as long as g(x) ≠ 0 and the limit exists, limx→∞ |f(x)/g(x)| = C or 0 (if
g is too big) where C is some positive constant.

Example 3.2.2. Show that 4n3+9n2−n
6 is O(2n

3

3) where n ∈ N.

20 Computational Complexity

Solution. For n ≥ 1 (thus N = 1),∣∣∣∣4n3 + 9n2 − n

6

∣∣∣∣
≤
∣∣∣∣4n3

6

∣∣∣∣+ ∣∣∣∣9n2

6

∣∣∣∣+ ∣∣∣n6 ∣∣∣ by the Triangle Inequality (Theorem B.2.3)

(3.12)

≤ 4n3

6
+

9n3

6
+

n3

6
since n ≥ 1 (3.13)

=
14n3

6
(3.14)

=
7

2
·
∣∣∣∣2n3

3

∣∣∣∣ (3.15)

establishing 4n3+9n2−n
6 is O(2n

3

3) where C = 7/2. Notice that

lim
n→∞

(
4n3 + 9n2 − n

6

)
/

(
2n3

3

)
= 1 (3.16)

■

Regarding our work in Example 3.2.2 one usually would not include the

constant 2/3 but rather report the answer as 4n3+9n2−n
6 is O(n3). This is,

of course, because the constant does not matter in big O notation. Some
Numerical Analysis texts use this problem as an example, though, and include
the constant 2/3 when reporting the approximate number of 2. We have kept
the constant to be consistent with those texts and though technically correct,
including the constant in the O(·) can viewed as bad form.

It is important to realize that Big O notation gives an asymptotic (long
run) upper bound on a function. It should also be noted that when using big
O notation, O(g(x)) is a set and, as such, one should write “h(x) ∈ O(g(x))”.
Note, though, that it is standard practice to abuse the notation and state
“h(x) = O(g(x))” or “h(x) is O(g(x))”.

One further observation before some examples. We have shown that the
number of arithmetic operations in performing Gaussian elimination to solve

a linear system in n variables is G(n) = 4n3+9n2−n
6 and that this function is

O(23n
2). Furthering our work in Example 3.2.2 by picking up in 3.15 we have

7

2

∣∣∣∣2n3

3

∣∣∣∣ = 7

3
n3 (3.17)

< n4 for n ≥ 3. (3.18)

2The reason for this is that using Cholesky Decomposition (Chapter 5) to solve a system

of linear equations is O(n
3

3
); i.e. twice as fast as Gaussian elimination.

Intractability 21

Thus, not only is G(n) = O(23n
3), G(n) = O(n4). In fact,

Observation 3.2.3. Let x be a positive real number and suppose f(x) is
O(xk). Then for any l > k, f(x) is O(xl).

We now consider a few more important examples before moving on.

Example 3.2.4. Let n ∈ Z+. Then

1 + 2 + 3 + · · ·+ n ≤
n terms︷ ︸︸ ︷

n+ n+ n+ · · ·+ n = n2 (3.19)

and taking C = N = 1 we see that the sum of the first n positive integers is
O(n2).

Example 3.2.5. Let n ∈ Z+. Then

n! := n(n− 1)(n− 2) · · · 3 · 2 · 1 ≤
n factors︷ ︸︸ ︷

n · n · n · · · · · n = nn (3.20)

and taking C = N = 1 we see that n! is O(nn).

Example 3.2.6. Show that for n ∈ N, f(n) = nk+1 is not O(nk) for any
nonnegative integer k.

Solution. Let us assume for contradiction that the statement is true, namely
there exist positive constants C and N such that nk+1 ≤ Cnk for all n ≥ N .
Thus for all n ≥ N , n ≤ C, which is absurd, since n is a natural number and
therefore unbounded. Thus nk+1 cannot be O(nk). ■

Growth of basic “orders” of functions are shown in Figure 3.1. Note that
though n! is defined for nonnegative integers, Exercises 9.1 and 9.2 show how
to extend the factorial function to the real numbers.

Before concluding this section, we mention that other asymptotic notation
exists, for example: o(g(x)), ω(g(x)), Ω(g(x)), Θ(g(x)), etc., but we do not
consider them here3.

3.3 Intractability

Some problems we will encounter will have solutions that can be reached in
theory, but take too much time in practice, are said to be intractable. Con-
versely, any problem that can be solved in practice is said to be tractable; that
is, “easily worked” or “easily handled or controlled” [16]. The bounds between

3The interested reader is encouraged to read the appropriate sections in [11] or [48].

22 Computational Complexity

c=O(1)

log(x)

x

xlog(x)

x^2

2^x

x!=O(x^x)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

20

40

60

80

FIGURE 3.1
The growth of functions.

these two are not clearly defined and depend on the situation. Though the dis-
cipline lacks a precise definition of both tractable and intractable, their usage
is standard and necessary for many situations encountered in Optimization.

For an example, let us revisit using Gauss-Jordan elimination as was con-
sidered in Section 3.1. Oak Ridge National Laboratory unveiled in 2018 its
supercomputer Summit capable of 122.3 petaflops (122.3× 1015) calculations
per second. Without worrying about the details, let us assume a good PC can
do 100,000,000,000 = 1011 calculations per second (this is a little generous).
By our work in Section 3.1, to perform Gaussian elimination on a matrix with
106 rows (i.e. a system of equations with 106 variables) it would take Summit

2

3
(106)3/122.3× 1015 ≈ 5.45 seconds. (3.21)

On a good PC this would take(
2

3
(106)3/1011

)
/86400 seconds per day ≈ 77 days. (3.22)

Note that these calculation are not exact as we have not consider calls to
memory, etc., but they do illustrate the point.

Spending 77 days to solve a problem is a nuisance, but not an insur-
mountable situation. Depending on the practice one would have to decide if
this amount of time makes the problem intractable or not. But Gauss-Jordan
elimination is a polynomial time algorithm, so to better illustrate this point
let us now assume we have a program that runs in exponential time; say one
that has as its runtime 2n. For n = 100 (considerably less than 1,000,000) this

Complexity Classes 23

program would run on Summit for(
2100/122.3× 1015

)
/31536000 seconds per year ≈ 3.3 years! (3.23)

We will not even consider how long this would take on a good PC. If we
consider a system with n = 103 variables, the runtime on Summit becomes
2.7× 10276 years which is 2× 10266 times the age of the universe.

We will close this section by noting that most computer security depends
on intractability. The most used public key encryption scheme is known as
RSA encryption. This encryption scheme uses a 400 digit number that is
known to be the product of two primes and it works well since currently
factoring algorithms for a number this large are intractable4. The intractability
of this problem will most likely change with quantum computing.

3.4 Complexity Classes

3.4.1 Introduction

It would be helpful to have a metric by which to classify the computational
difficulty of a problem. One such tool is the complexity class. A complexity
class is a set of problems that can be solved using some model of computation
(often this model of computation is given a limited amount of space, time, or
some other resource to work out the problem). A model of computation is any
method of computing an output given an input.

One of the most useful models of computation is the Turing machine.
For the sake of our discussion we can consider a “Turing machine” as any
algorithm that follows the following method:

0. Initialize an infinite string of “blank symbols”. Each symbol can be referred
to by its position, starting at position 0. This string of symbols is called
the tape of the Turing machine.

1. Write a given finite string of symbols, s, to the tape starting at position
0. Each symbol in s must be taken from a given finite set of symbols,
A, known as the alphabet of the Turing machine. A contains the blank
symbol. We often restrict s so that it cannot contain the blank symbol.

2. Choose an arbitrary non-negative integer k and read the kth symbol of the
tape. This step is referred to as “moving the head of the Turing Machine
to position k”.

4The nature of primes is also involved here. Although they are the building blocks of all
integers, we know little about them, especially how many there are in (large) intervals and
where they reside.

24 Computational Complexity

3. Change the kth symbol of the tape to any symbol in A.

4. Go to step 2 or step 5.

5. Declare either “accept” or “reject” (This is referred to as “accepting or
rejecting the input string”.) A Turing machine that reaches this step is
said to halt.

When we discuss Turing machines we usually just assume step 0 has al-
ready occurred but its important to note that Turing machines in concept
have an infinite amount of space on the tape to store information and that
they look up information by moving the head to its position on the tape. For
any position k on the tape we say that position k− n is “n to the left” of po-
sition k and the position k+n is “n to the right” of position k. The following
algorithm is an example of a Turing Machine that we will call TM :

1. Write a given string of symbols, s, to the beginning of the tape where
every symbol of s is in the set {0, 1}.

2. Move the head to the first blank after s. (We will call this position on the
tape p).

3. Write the symbol 0 to position p.

4. Move the head to position 0.

5. If the symbol at the head’s position is 1, move the head to position p and
change the symbol at position p to a 1 if it is a 0 and to a 0 if it is a 1,
then move the head back to where it was when we started this step.

6. Move the head one symbol to the right.

7. If the head is at position p, go to step 8. Otherwise go to step 5.

8. Read the symbol at position p. If it is 1, accept. If it is 0, reject.

TM is a simple Turing machine that accepts all strings that contain an
odd number of 1 symbols and rejects all strings that do not. Hence, TM solves
a decision problem. A decision problem is a problem with an answer than is
either “yes” or “no”. TM solves or decides the decision problem “Does the
given string s have an odd number of 1 symbols?” When we say that TM
“solves” this problem, we mean:

1. If L is the set of all strings that contain an odd number of 1 symbols, TM
will accept a string s if and only if s ∈ L. (This is equivalent to saying
that “L is the language of TM”)

2. TM halts on every string. (It always reaches step 5 in the original given
Turing machine definition).

Complexity Classes 25

Note that the second point is not trivial because Turing machines can get
stuck in an infinite loop of moving the head and writing symbols. Now that we
have a working definition of a Turing machine, we will explore how complexity
classes are defined using Turing machines as their model of computation.

3.4.2 Time, Space, and Big O Notation

As previously mentioned, complexity classes usually give their chosen model
of computation a limited resource. When defining complexity classes involving
Turing Machines we often limit either the amount of time or space the Turing
machine can use to solve the problem. Time refers to the amount of head-
moving5 and writing steps the Turing machine can make and space refers to
the number of positions after the given input string on the tape the Turing
machine may use.

In general, we are concerned with how Turing machines run on all inputs
they can take. This presents a problem – because how much space or time
a Turing machine uses to run can significantly vary based on the size of the
input it is given. It is therefore usually the case that we do not place problems
in complexity classes based on the absolute amount of time or space a Turing
machine that solves the problems will take. Instead we allow Turing machines
to use an asymptotically increasing amount of resources relative to the size of
their inputs.

As we are thinking asymptotically, it is helpful to use Big O notation
when defining complexity classes. Consider a Turing machine T and h(n),
where h(n) is a function that maps the integer n to the greatest amount of
read and write steps T will take on an input string of size n. If h(n) ∈ O(f(n))
we say that “T runs in O(f) time”.

3.4.3 The Complexity Class P

P is the set of all decision problems that can be solved in polynomial time by
a Turing machine. More formally, a set of strings L is in P if and only if there
exists a Turing machine whose language is L that runs in O(nk) time where
k is some integer (Note that this means P is a set of languages. Not a set of
Turing machines). P is sometimes thought of as the set of decision problems
whose solutions are tractable. This is not the whole truth – some problems
can be bounded above by large polynomials and be in P and some problems
can not be asymptotically bound by a polynomial but still be solvable for
reasonably sized inputs – but it is very often the case that problems in P are
tractable and problems out of P with large inputs are not.

5In our given definition of a Turing machine we conceptualized moving the head of the
Turing machine to an arbitrary position as “one step” in the algorithm. However – when
counting the number of operations a Turing machine takes if a Turing machine moves from
position p1 to position p2 the Turing machine has taken |p1 − p2| steps.

26 Computational Complexity

For this reason polynomial time algorithms – especially algorithms that run
in O(n log n) time or quicker – are often the goal when attempting to optimize
the speed at which a decision problem is solved by a Turing machine. Though
finding such algorithms for some problems is often elusive and sometimes
impossible. That being said many practical problems exist in P . Determining
whether or not there is a path of length n or less between two cities when given
the set of roads between them, determining whether or not an item is on a list,
determining whether two integers are coprime, and determining whether an
integer is prime are all decision problems that exist in P . (The input strings
for these problems are string representations of the integers, paths between
cities, etc).

3.4.4 The Complexity Class NP

NP is a complexity class that contains all languages L for which if s ∈ L there
exists a proof that can be verified in polynomial time that s is in L6. More
precisely, A language L is in NP if there exists a Turing machine, TM(s, c)7

for which the following properties hold:

1. TM always runs in O(nk) time on any input s, c where n is the length of
s and k is some integer.

2. If s ∈ L – there exists a c such that TM(s, c) accepts. (We say that c is
the certificate of s).

3. if s /∈ L – no c exists such that TM(s, c) accepts.

An example may be enlightening. Consider the subset-sum problem:
“Given an integer n and a set of integers S, is there some subset of S that
adds to n?” In this instance the certificate that can be verified in polynomial
time is a subset of S that adds to n. If given S, n, and a subset of S that adds
to n, a deterministic Turing machine could add the given subset and accept
if and only if it adds to n. Such a subset will always exist if (S, n) ∈ L and
because we only accept if the subset of S adds to n – this Turing machine
will never be “tricked” into accepting a string that is not in L (i.e. the third
above premise holds). Hence, if (S, n) ∈ L there is a proof that can be verified
in polynomial time that (S, n) is in L.

NP is an interesting complexity class because many important optimiza-
tion problems exist in NP . Whether or not a graph is n-colorable (see Chapter
21), determining whether or not there is a Hamiltonian cycle of weight less
than n (also introduced in Chapter 21), whether or not a set of Boolean clauses

6NP is short for “non-deterministic polynomial” which is a description of a more gener-
alized version of a Turing machine. For more information check out Chapter 2 of Compu-
tational complexity: a modern approach in the further reading section.

7Because Turing machines can take arbitrary strings as arguments – it is conventional
to use the notation TM(s1, s2, ...sn) if drawing a distinction between different parts of the
input is important.

For Further Study 27

can be satisfied, determining whether a set of flights can be scheduled without
any conflicts, and determining whether k varying sized objects can be packed
into n bins are all problems in NP 8. NP is also mysterious in that it is un-
known whether or not P = NP – which means it is possible that there is are
efficient algorithms for solving the toughest problems in NP that have not
yet been discovered. Much effort has been dedicated to trying to find efficient
algorithms for solving NP problems and there are a wide variety of heuristics
for doing so that work well but not perfectly. For an example of a heuristic,
see the Nearest Neighbor Algorithm or the insertion algorithms for solving the
Traveling Salesperson Problem (Chapter 25).

3.4.5 Utility of Complexity Classes

Complexity classes are a useful tool for classifying the computational difficulty
of solving a problem. It is almost universally the case that if a problem is in
EXPTIME (the class of problems solvable by Turing machines in exponential
time) and not in P – that problem will be more difficult than one in P as
inputs get large. If we are trying to determine the computational difficulty
of a problem it may therefore be helpful to discover information about which
complexity class it belongs to. In particular it may be useful to determine if
the problem is in P , NP , or neither.

3.5 For Further Study

Parts of these texts have excellent presentations on what we have considered
and can be used to deepen ones understanding of the material presented in
this chapter:

• An Introduction to Algorithms, 3rd edition, Thomas H. Cormen, Charles
E. Leiserson, Ronald L. Rivest, and Clifford Stein; MIT Press (2009).
(This is the go-to text for many experts when it comes to the study of
algorithms.)

• Discrete Mathematics and Its Applications, 8th edition by Kenneth Rosen,
McGraw-Hill (2019)

• Concrete Mathematics a Foundation for Computer Science, 2nd edition
by Ronald Graham, Donald Knuth, and Oren Patashnik, Addison Wesley
(1994)

8These problems are NP-complete meaning that all problems in NP are less difficult
than they are. For a more thorough discussion of what that means – see chapter 2 of
Computational complexity: A Modern Approach listed in the further study section of this
chapter.

28 Computational Complexity

This list is not, of course, an exhaustive list of excellent sources for a
general overview of optimization.

3.6 Keywords

Gauss-Jordan elimination, Gaussian elimination, arithmetic complexity,
asymptotic notation, big O notation, intractability, complexity class, model
of computation, Turing machine, P , NP .

3.7 Exercises

Exercise 3.1. In this chapter, we determined that the number of arithmetic
operations to perform Gaussian elimination to solve a system in n variables is

G(n) = 4n3+9n2−13n
6 = O(23n

3). Consider a linear system with 412 variables.

i) What is the exact number of arithmetic operations to use Guassian elim-
ination to solve this system?

ii) Calculate the value of the order 2
3n

3 for this system and determine the
percent error of this approximation of G(n).

iii) What is the first value of n for which O(23n
3) has less than a 1% error in

approximating G(n)?

Exercise 3.2. Show that x2 + x+ 1 is O(x2) but not O(x).

Exercise 3.3. Let n, k be positive integers. Show 1k+2k+· · ·+nk is O(nk+1).

Exercise 3.4. Prove Observation 3.2.3.

Exercise 3.5. Construct a Turing machine whose alphabet is {0, 1} that has
the language of all strings that contain more 1s than 0s.

Exercise 3.6. Construct a Turing machine whose alphabet is the set of inte-
gers between 0 and 100 that sorts the integers in the given string s in ascending
order, then accepts.

Exercise 3.7. Prove that if L is a language with a finite amount of strings
then L ∈ P .

Exercise 3.8. coP is the class of decision problems for which if L ∈ P then
L̄ ∈ coP . Prove that P = coP .

Exercise 3.9. Prove that P ⊆ NP .

4

Algebra Review

“For the things of this world cannot be made known without a knowl-
edge of mathematics.”

– Roger Bacon

“Here arises a puzzle that has disturbed scientists of all periods.
How can it be that mathematics, being after all a product of human
thought which is independent of experience, is so admirably appro-
priate to the objects of reality? Is human reason, then, without ex-
perience, merely by taking thought, able to fathom the properties of
real things?”

– Albert Einstein

Many techniques used in this text will require some knowledge of various
levels of algebra, both elementary algebra and linear algebra. Linear algebra is
at the heart of machine learning. This chapter provides a refresher of relevant
algebraic techniques and may either be read carefully, skimmed, or visited as
needed.

4.1 Systems of Linear Inequalities in Two
Variables – Geometric Solutions

The very first Optimization topic we will study will require an understanding
of solving systems of linear inequalities. Before we look at those, though, let
us make sure we understand the terminology.

Recall that a linear function in n variables is a function such that the
maximum total degree of each term is 1. The graph of a linear function

y = c0 + c1x1 + · · ·+ cnxn (4.1)

in n variables is a hyperplane in Rn+1. A point in Rn+1 is on this hyperplane
if and only if its coordinates satisfy 4.1. Of course, in R2, this hyperplane is a
line and, in R3, the this hyperplane is a plane.

A linear inequality is merely a statement like 4.1 but with the “=” replaced
by a “<”,“>”,“≤”, or “≥”. A linear inequality in one variable has as its graph

DOI: 10.1201/9780367425517-4 29

https://doi.org/10.1201/9780367425517-4

30 Algebra Review

either a line (if “≤” or “≥”) or dotted line (if “<” or “>”) together with the
corresponding half-plane (we will see examples soon). Analogous statements
hold for hyperplanes and half-spaces in higher dimensions; that is, functions
involving more than one variable. A system of linear inequalities is a collection
of linear inequalities.

The solution set to a system of linear inequalities is the collection of all
points that satisfy each inequality in the system. Often this is most easily
represented by a graph. A solution set is said to be bounded1 if the entire
region can be enclosed in a circle in the two dimensional case or a ball in the
general case. If the region cannot be entirely enclosed in an arbitrary circle,
then the region is said to be unbounded. As well, we note that a point in
the solution region that is the intersection of two boundary lines is called a
corner point or extreme point of a solution set. When the solution set is for
a system of linear inequalities in a linear programming problem (Chapter 6),
the solution set is called a feasible region and its corner points are, in this
context, often referred to as vertices of the feasible region. The significance of
the corner points of feasible regions will be discussed later.

4.1.1 Examples

We will solve each of the following systems of linear inequalities graphically
and state whether the system’s solution region is bounded or unbounded. By
the graph of a system of inequalities we mean “the collection of points that
satisfy all the stated inequalities”.

Example 4.1.1.

2x+ y ≤ 10 (4.2)

x+ 2y ≤ 8 (4.3)

x ≥ 0 (4.4)

y ≥ 0 (4.5)

Example 4.1.2.

2x+ y > 10 (4.6)

x+ 2y ≥ 8 (4.7)

x ≥ 0 (4.8)

y ≥ 0 (4.9)

1A precise mathematical definition of bounded exists, but we will be comfortable in this
text with some informal definitions.

Systems of Linear Inequalities in Two Variables – Geometric Solutions 31

FIGURE 4.1
Example 4.1.1 – bounded solution set.

FIGURE 4.2
Example 4.1.2 – unbounded solution set.

Example 4.1.3.

x+ 4y ≤ 32 (4.10)

3x+ y ≤ 30 (4.11)

4x+ 5y ≥ 51 (4.12)

32 Algebra Review

0 5 10 15

0

2

4

6

8

10

12

FIGURE 4.3
Example 4.1.3 – bounded solution set.

Example 4.1.4.

4x+ 3y ≤ 48 (4.13)

2x+ y ≥ 24 (4.14)

x ≤ 9 (4.15)

FIGURE 4.4
Example 4.1.4 – empty solution set.

Solving Systems of Linear Equations Using Linear Algebra 33

We note that in each of these examples the corner points can be found by
solving algebraically the system of equations corresponding to the intersecting
lines. For instance, to find the corner point in Example 4.1.1 that is not on
either the x or y axis, we solve{

2x+ y = 10
x+ 2y = 8.

(4.16)

The corner point is (4, 2).

4.2 Solving Systems of Linear Equations Using Linear
Algebra

4.2.1 Gauss-Jordan Elimination

Solving a system of linear equations via geometry has the advantage that we
have a visual representation of what is taking place. The disadvantage is that
the graph may be too complicated to get an understanding of what is going
on if there are too many equations. Worse, it may be impossible to draw as is
the case of a system with functions having three or more variables.

Suppose we are faced with solving the system 3x1 − 5x2 + x3 = 18
−2x1 + x2 − x3 = 5
x1 − x2 + 3x3 = −4.

We could pick one equation, isolate a variable, then substitute for that variable
in the remaining equations. This reduces the system to two equations in two
unknowns and then we could go from there, but that is too much work. Instead,
we can combine equations to eliminate variables. For example, we can

• multiply equation 3 by −3 and add it to equation 1 and
• multiply equation 3 by 2 and add it to equation 2

to get  −2x2 − 8x3 = 30
−x2 + 5x3 = −3

x1 − x2 + 3x3 = −4
Let us now

• multiply equation 2 by −1 and
• interchange equations 1 and 3: x1 − x2 + 3x3 = −4

1x2 − 5x3 = 3
−2x2 − 8x3 = 30

34 Algebra Review

Lastly,

• add equation 2 to equation 1 and
• multiply equation 2 by 2 and add to equation 3

to get  x1 −2x3 = −1
x2 −5x3 = 3

−18x3 = 36.

The third equation gives x3 = −2 and we may use this to back substitute into
equation 2 to find x2 = −7 and into equation 1 to find x1 = −5. We note that
our legal algebraic operations on the equations2 were:

Observation 4.2.1 (Legal Operations on Systems of Equations).

• multiply an equation by a nonzero constant,
• interchange two equations, and
• add a constant times an equation to another equation.

This is a perfectly legitimate method, but it is too much work and we may
want a simpler way to express what we are doing so that a computer can do
it for us. Hence we instead introduce the augmented matrix : 3 −5 1 18

−2 1 −1 5
1 −1 3 −4


and perform Gauss-Jordan elimination (row operations) to get the matrix in
reduced form. The legal row operations3 are called elementary row operations
and correspond exactly to the algebraic operations on equations used above
and appearing in Observation 4.2.1.

Theorem 4.2.2 (Elementary Row Operations). When using Gauss-Jordan
elimination, the row operations that do not change the solution set are

• multiply a row by a nonzero constant,
• interchange two rows, and
• add a constant times a row to another row.

Note that these row operations, called elementary row operations, corre-
spond exactly to the algebraic operations on equations listed previously.

2In a typical high school algebra class no explanation is provided as to why these oper-
ations are “legal” or what even legal means. A little Linear Algebra will soon provide the
answers.

3The reasons why these are the legal operations will be clear after Theorems 4.3.48 and
4.3.50.

Solving Systems of Linear Equations Using Linear Algebra 35

So we can conveniently rewrite our example as 3 −5 1 18
−2 1 −1 5
1 −1 3 −4

 −3R2+R1→R1−−−−−−−−−−→
2R3+R2→R2

 0 −2 −8 30
0 −1 5 −3
1 −1 3 −4

 (4.17)

R1↔R3−−−−−−→
−R2→R2

 1 −1 3 −4
0 1 −5 3
0 −2 −8 30

 (4.18)

R2+R1↔R1−−−−−−−−→
2R2+R3→R3

 1 0 −2 −1
0 1 −5 3
0 0 −18 36

 (4.19)

Certainly, we can back substitute (see the next section) from here, but two
more steps will nicely put the matrix in reduced row echelon form (i.e. at most
1 nonzero entry, a 1, in each column of the left hand side of |):

− 1
18R3→R3−−−−−−−−→

 1 0 −2 −1
0 1 −5 3
0 0 1 −2

 (4.20)

5R3+R2→R2−−−−−−−−→
2R3+R1→R1

 1 0 0 −5
0 1 0 −7
0 0 1 −2

 (4.21)

and we now easily see the solution is x1 = −5, x2 = −7, x3 = −2.

4.2.2 Gaussian Elimination Compared with Gauss-Jordan
Elimination

The previous section introduced the important technique Gauss-Jordan elim-
ination. We now introduce a truncated version of this technique which is re-
ferred to as Gaussian elimination. Gaussian elimination has the advantage of
being less computationally expensive than Gauss-Jordan elimination4. First,
some necessary definitions.

Definition 4.2.3 (Row Echelon Form). A matrix is in row echelon form if
it satisfies

i) the first nonzero entry (called the leading entry) of any row is 1,

ii) each leading entry is in a column to the right of the previous row’s entry,
and

iii) rows consisting entirely of 0s are at the bottom.

4See [1] or other Numerical Analysis texts.

36 Algebra Review

The matrix in (4.19) is in row echelon form.

Definition 4.2.4 (Reduced Row Echelon Form). A matrix is in reduced row
echelon form if

i) it is in row echelon form and

ii) each column with a leading 1 has zeros in all other entries.

The matrix in (4.21) is in reduced row echelon form.
In the previous section, the solution was reached via Gauss-Jordan elim-

ination; that is the augmented matrix representing the original system of
equations is manipulated via row operations until it is in reduced row echelon
form. Once the augmented matrix is in reduced row echelon form the solu-
tion may be directly obtained. In Gaussian elimination the row operations
halt when the augmented matrix is in row echelon form then back substitu-
tion is used. Solving the previous section’s example via Gaussian Elimination
involves stopping row operations at (4.19) then using back substitution:

From row 3:
−18x3 = 36

thus x3 = −2.
Using this solution with row 2:

x2 = 3 + 5x3

so x2 = −7.
Lastly these solutions together with row 1 give

x1 = −1 + 2x3

and we have x1 = −5.

4.3 Linear Algebra Basics

There is no more a pervasive a tool in optimization and the mechanics of
computer usage than linear algebra. It is the skeletal structure of machine
learning to which all of its other tools attached. Thus understanding what
follows is crucial to understanding the operating procedures of most of what
is in this text. We begin by recalling some basic definitions and the algebra of
vectors and matrices.

4.3.1 Matrices and Their Multiplication

A matrix is a rectangular array of numbers. If the matrix has m rows and n
columns, the matrix is refereed to as an m×n matrix . A submatrix of matrix

Linear Algebra Basics 37

A is a matrix formed from A by deleting any amount of rows or columns of
A.

Example 4.3.1. The matrix A =

 1 0 −2 3
0 7 −4 5
−2 4 −1 6

 has

 1 −2 3
0 −4 5
−2 −1 6

 and[
0 3
4 6

]
as two of its possible submatrices.

A useful operator on matrices is the notion of its transpose.

Definition 4.3.2 (The Transpose of a Matrix).
Consider the m× n (m rows, n columns) matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 . (4.22)

The transpose of A is

AT =


a1,1 a2,1 · · · am,1

a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n

 . (4.23)

In shorthand notation, if A = [ai,j]
5, then AT = [aj,i]; that is we swap the

rows and columns of A to form AT . Note that if A is in Rm×n, then AT is in
Rn×m.

Matrices that are there own transpose will have some special properties,
so we will give these matrices a name (actually, many names). A real matrix
A is said to be Hermitian or self-adjoint6 if A = AT . We may also refer to
such a matrix A as a symmetric matrix . Clearly a symmetric matrix must be
a square matrix. We will explore one useful property of self-adjoint matrices
in the chapter on matrix factorization (Chapter 5).

The reader is hopefully familiar with vectors and we note that in the
context of this text we are primarily concerned with seeing a vector as a
special matrix and not so much all the wonderful qualities vectors have in
Physics. For example, the row vector x = ⟨x1, x2, . . . , xn⟩ can be seen as the
1×n matrix A = [x1, x2, . . . , xn] and the column vector xT as the n×1 matrix
AT .

5It is often the case that the comma is omitted when writing the index of the entry in a
matrix. That is, it is acceptable to write a32 for a3,2.

6A proper full definition of Hermitian matrices involves considering complex entries.
When the entries of A can include complex numbers, A is Hermitian if it is equal to its own

conjugate transpose; that is, A = AT meaning aij = aji. As we will only be considering
real matrices, stating the full definition is unnecessarily cumbersome.

38 Algebra Review

Since v + v should be 2v, multiplication between a number and a vector
is defined as:

Definition 4.3.3 (Scalar Multiplication). Let c ∈ R and let v =
⟨v1, v2, . . . , vn⟩. Then

cv := ⟨cv1, cv2, . . . cvn⟩

There are two different multiplications defined for vectors: the dot product
and the cross product (which is only defined for vectors in three dimensions).
We will have no use for the cross product of two vectors, so we remind the
reader

Definition 4.3.4 (Dot Product). Let a = ⟨a1, . . . , an⟩ and b = ⟨b1, . . . , bn⟩.
Then the dot product of a and b is

a · b := a1b1 + a2b2 + · · ·+ anbn. (4.24)

One use of the dot product is calculating the magnitude (or length) of a
vector.

Definition 4.3.5 (Magnitude of a Vector). For x = ⟨x1, x2, . . . , xn⟩ in Rn,
let ||x|| represent the length or magnitude of x.

By the Pythagorean Theorem (Theorem B.2.1), for the vector in the defi-
nition, we have

||x|| =
√

x2
1 + x2

2 + · · ·+ x2
n. (4.25)

As stated, a useful property of the dot product is

Proposition 4.3.6. For u,v ∈ Rn,

u · v = ||u|| ||v|| cos θ

where θ is the angle between u and v.

From either Definition 4.3.4 or Proposition 4.3.6, it follows easily that

Remark 4.3.7.
||v|| =

√
v · v.

We add any vector with magnitude 1 is called a unit vector . Note that for
any nonzero vector v, v

||v|| is a unit vector parallel to v. Dividing a vector by

its magnitude to create a unit vector that is parallel7 to the original vector is
called normalizing the vector .

With the dot product defined, we can refresh our memories as to the
product of two matrices:

7Recall that u is parallel to vector v if there exists a real number c such that u = cv.

Linear Algebra Basics 39

Definition 4.3.8 (Matrix Multiplication). Let A be the m × n matrix A =a1...
am

 consisting of row vectors and B be the n×r matrix B = [b1,b2, · · · ,br]

consisting of column vectors. Then the matrix product A×B is the m×r matrix

C = A×B =


a1 · b1 a1 · b2 · · · a1 · br

a2 · b1 a2 · b2 · · · a2 · br

...
...

. . .
...

am · b1 am · b2 · · · am · br

 ; (4.26)

that is, cij := ai · bj .

Example 4.3.9. Find C = A × B where A =

 1 −1
0 2
−1 1

 and B =[
1 2 3 4
0 1 2 3

]
.

Solution. We have

c1,1 = a1 · b1 = [1,−1] · [1, 0]T = 1 (4.27)

c2,1 = a2 · b1 = [0, 2] · [1, 0]T = 0 (4.28)

c3,1 = a3 · b1 = [−1, 1] · [1, 0]T = −1 (4.29)

c1,2 = a1 · b2 = [1,−1] · [2, 1]T = 1 (4.30)

c2,2 = a2 · b2 = [0, 2] · [2, 1]T = 2 (4.31)

c3,2 = a3 · b2 = [−1, 1] · [2, 1]T = 1 (4.32)

c1,3 = a1 · b3 = [1,−1] · [3, 2]T = 1 (4.33)

c2,3 = a2 · b3 = [0, 2] · [3, 2]T = 4 (4.34)

c3,3 = a3 · b3 = [−1, 1] · [3, 2]T = −1 (4.35)

c1,4 = a1 · b4 = [1,−1] · [4, 3]T = 1 (4.36)

c2,4 = a2 · b4 = [0, 2] · [4, 3]T = 6 (4.37)

c3,4 = a3 · b4 = [−1, 1] · [4, 3]T = −1 (4.38)

Thus

C =

 1 1 1 1
0 2 4 6
−1 1 −1 −1


■

40 Algebra Review

4.3.2 Identity Matrices, Inverses, and Determinants of
Matrices

Since we have discussed the process of matrix multiplication, it is natural to
consider matrices that behave how a 1 does under multiplication of numbers.
For any number a, a · 1 = a = 1 · a; that is, 1 is the multiplicative identity
when multiplying numbers; i.e. multiplying by 1 does not change the number’s
identity. That is we seek a matrix I such that AI = I = IA. Once we have an
identity, we may develop the process of undoing multiplication.

Definition 4.3.10 (Identity Matrix). Let In (denoted I when the n is under-
stood) be the n × n matrix with 1’s on the diagonal and 0’s elsewhere. That
is

In = I =


1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1


I is not the identity matrix just because we say so, but it is not hard to

prove that I serves as an identity matrix and that, for a given n, I = In is
unique (see Exercise 4.11).

Definition 4.3.11 (Invertible Matrix). Let A be an n × n matrix. If there
exists an n × n matrix B such that AB = I = BA, then A is said to be
invertible with inverse B.

The analogy of Definition 4.3.11 with real numbers is consider something
like 3× 1/3 = 1. In this situation, 3 is invertible with (multiplicative) inverse
1/3. This is why A’s inverse B is denoted by A−1. Note also that the left
inverse and right inverse do not generally have to agree in algebraic structures
(i.e. there are times when ba = 1 = ac but a ̸= c), but for square matrices the
left and right inverses always agree (see Exercise 4.12).

Let us consider a 2×2 matrix A and find its inverse (assuming one exists);
that is find constants e, f , g, and h such that

AA−1 =

[
a b
c d

] [
e f
g h

]
=

[
1 0
0 1

]
. (4.39)

Multiplying the matrices gives the system of equations
ab+ bg = 1
af + bh = 0
ce+ dg = 0
cf + dh = 1.

(4.40)

Treating a, b, c, and d as constants gives the solution

e =
d

ad− bc
, f =

−b
ad− bc

, g =
−c

ad− bc
, h =

a

ad− bc
; (4.41)

Linear Algebra Basics 41

that is,

A−1 =
1

ad− bc

[
d −b
−c a

]
. (4.42)

Notice how the term ad − bc is present in the denominator of each term.
Moreover, we have just shown that a 2× 2 matrix like A will have an inverse
exactly when ad − bc ̸= 0. As such, this value is so important, we give it a
name.

Definition 4.3.12 (Determinant of a 2× 2 Matrix). Let A =

[
a b
c d

]
. Then

the determinant of A is
det(A) := ad− bc.

By this discussion we have also proven the important result

Theorem 4.3.13. Let A be a 2 × 2 matrix. Then A has an inverse if and
only if det(A) ̸= 0.

We will see very soon that it is not just for 2× 2 matrices that invertiblity
requires a nonzero determinant. Moreover, since it is that case that invertible
matrices must have a nonzero determinant, those that have a determinant of
zero are given a special name.

Definition 4.3.14 (Singular Matrix). A matrix A that has the property that
det(A) = 0 is said to be a singular matrix. Matrices whose determinant is
nonzero are said to be non-singular.

Determinants of higher ordered square matrices are more involved and
include the notion of minor matrices and cofactors.

Definition 4.3.15 (Minor Matrix). Let A be an n× n matrix with aij as its
entry in the ith row and jth column; that is

A =

a11 a12 · · · a1n
...

...
...

an1 an2 · · · ann


Then the ijth minor matrix of A is the n−1×n−1 matrix Aij that is formed
by removing the ith row and jth column from A; that is

Aij :=



a11 a12 · · · a1j−1 a1j+1 · · · a1n
a21 a22 · · · a2j−1 a2j+1 · · · a2n
...

...
...

...
...

ai−11 ai−22 · · · · · · ai−1j−1 ai−1j+1 a1n
ai+11 ai+22 · · · · · · ai+1j−1 ai+1j+1 ai+1n

...
...

...
...

...
an1 an2 · · · · · · anj−1 anj+1 ann


.

42 Algebra Review

One more piece is needed before defining determinants of a general square
matrix.

Definition 4.3.16 (Cofactor of a Square Matrix). Let A be an n× n matrix
with aij as its entry in the ith row and jth column. Then the ijth cofactor of
A is

A′
ij := (−1)i+j det(Aij)

(as we will see in its definition, we will assume we know how to get the deter-
minant of matrices of smaller order; namely, we state a definition that follows
an inductive process).

Now we may finish the goal:

Definition 4.3.17 (Determinant of an n × n Matrix). If A = [a] (a matrix
with a single entry; a singleton), then detA = a. The determinant of a 2× 2
matrix is given in Definition 4.3.12. Let A be an n × n matrix with n ≥ 2.
Then

det(A) := a11A
′
11 + a12A

′
12 + · · ·+ a1nA

′
1n

where a1j is the jth entry in the first row of A and A′
1j is the 1jth cofactor.

Definition 4.3.17 may be extended to a very useful form:

Theorem 4.3.18 (General Expansion by Minors). Let A be an n×n matrix
with n ≥ 2 and assume that determinants are defined for square matrices of
order less than n. Then

det(A) = ai1A
′
i1 + ai2A

′
i2 + · · ·+ ainA

′
in (4.43)

or
det(A) = a1jA

′
1j + a2jA

′
2j + · · ·+ anjA

′
nj (4.44)

where aij is the entry of A in row i and column j and A′
ij is the ijth cofactor.

When finding a determinant by general expansion by minors, (4.43) is
referred to as the expansion of det(A) by minors on the ith row of A while
(4.44) is called the expansion of det(A) by minors on the jth column of A.

Example 4.3.19. Find det(A) by general expansion on minors for

A =


0 0 1 0 0
8 6 7 5 3
0 9 9 3 0
0 0 0 2 0
6 4 2 1 0



Linear Algebra Basics 43

Solution. The row that will be used for the expansion by minors has been
highlighted (note that the last column would also be a good choice). Thus

det(A) = (−1)5(0)A′
41 + (−1)6(0)A′

42 + (−1)7(0)A′
43 + (−1)8(2)A′

44

+ (−1)9(0)A′
45 (4.45)

= 2 · det



0 0 1 0
8 6 7 3
0 9 9 0
6 4 2 0


 (4.46)

= 2 ·
[
(−1)5(0)A′

14 + (−1)6(3)A′
24 + (−1)7(0)A′

34 + (−1)8(0)A′
44

]
(4.47)

= 6 · det

0 0 1
0 9 9
6 4 2

 (4.48)

= 6 ·
[
(−1)2(0)A′

11 + (−1)3(0)A′
12 + (−1)4(1)A′

13

]
(4.49)

= 6 · det
([

0 9
6 4

])
(4.50)

= 6(0 · 4− 6 · 9) = −324. (4.51)

■

Since we now have determinants for higher order matrices, we may extend
Theorem 4.3.13.

Theorem 4.3.20. Let A be a square matrix. Then A−1 exists if and only if
det(A) ̸= 0.

We will not offer a proof of Theorem 4.3.20 but will note it is part of the
larger Fundamental Theorem of Invertible Matrices (Theorem 4.3.54). A proof
can be found in [44].

Also, now that we are equipped with determinants, we may state a formula
for the inverse of a 3× 3 matrix:

Highlight 4.3.21 (Inverse of a 3× 3 Matrix).

Let A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 be an invertible matrix. Then

A−1 =
1

det(A)

A′
11 A′

21 A′
31

A′
12 A′

22 A′
32

A′
13 A′

23 A′
33


where A′

ij is the ijth cofactor of A as in Definition 4.3.16.

44 Algebra Review

Of course, one may also use the following technique.

Highlight 4.3.22 (Inverse of an n× n Invertible Matrix).
If A is an invertible matrix, then A−1 may be obtained using elementary row
operations (Theorem 4.2.2):

[A|I] row operations−−−−−−−−−−→
[
I|A−1

]
.

We will close the section by listing some of the useful properties of deter-
minants.

Theorem 4.3.23 (Properties of Determinants). Let A and B be square ma-
trices of order n, I = In the n× n identity matrix, and c a constant. Then

1. det(I) = 1

2. det(AT) = det(A)

3. det(A−1) = [det(A)]−1 = 1
det(A)

4. det(AB) = det(A) det(B)

5. det(cA) = cn det(A) and

6. if A is an upper triangular matrix, that is entry aij = 0 whenever i < j,
then

det(A) = a11a22 · · · ann;

thus the determinant of an upper triangular matrix is just the product of
its diagonal entries.

The proof of these properties is left as Exercise 4.14.

4.3.3 Solving Systems of Linear Equations via Cramer’s Rule

Determinants turn out to be incredibly useful as we will see in the following
theorem.

Theorem 4.3.24 (Cramer’s Rule). Let A be an n× n invertible matrix with
x = [x1, x2, . . . , xn]

T and b = [b1, b2, . . . , bn]
T . Let Ai represent the matrix

formed by replacing the ith column of A with b. Then if the system of linear
equations Ax = b has a unique solution, the solution can be found by

xi = det(Ai)/ det(A)

for i = 1, . . . , n.

The proof of Cramer’s Rule is not difficult, but either involves introducing
linear transformations or the adjoint of a matrix. As we wish to be a text on
optimization and not linear algebra, we will skip the proof and the curious
reader can consult any linear algebra text.

Linear Algebra Basics 45

Example 4.3.25. Use Cramer’s Rule to solve the system of equations

2x1 −3x2 +4x3 = 19
4x1 −3x2 = 17
2x1 −6x2 −x3 = 1

.

Solution. Putting the problem into the form Ax = b, we have A =2 −3 4
4 −3 0
2 −6 −1

, x = [x1, x2, x3]
T , and b = [19, 17, 1]T . Expanding by minors

(Theorem 4.3.18), we obtain

det(A) = (−1)4(4)
[
4 −3
2 −6

]
+ 0 + (−1)6(−1)

[
2 −3
4 −3

]
(4.52)

= 4(−24 + 6)− (−6 + 12) (4.53)

= −78. (4.54)

As det(A) ≠ 0, by Theorem 4.3.20, A is invertible and we may use Cramer’s
Rule. We have

A1 =

19 −3 4
17 −3 0
1 −6 −1

 , A2 =

2 19 4
4 17 0
2 1 −1

 , and A3 =

2 −3 19
4 −3 17
2 −6 1


which leads to det(A1) = −390, det(A2) = −78, and det(A3) = −234. Thus

x1 = det(A1)/det(A) = 5, x2 = det(A2)/det(A) = 1,

and x3 = det(A3)/det(A) = 3.

■

One can see that using Cramer’s Rule to solve systems of equations in-
volves calculating many determinants. Thus a program running a naive imple-
mentation of this process will be computationally much more expensive than
Gauss-Jordan Elimination (see Sections 3.1 and 4.2.2). This means Cramer’s
Rule does not have much use in practice, but it does have significant theoret-
ical value as we will see in Sections 4.4.2 and 24.2.

In addition to added runtime, Cramer’s rule has the additional disadvan-
tage of more numerical instability than Gauss-Jordan elimination. To under-
stand numerical instability, we must first understand matrix norms.

4.3.4 Vector and Matrix Norms

We discussed the magnitude of a vector in Definition 4.3.5 and may do the
same for matrices. First, we need some machinery.

Definition 4.3.26 (Vector Norm). Let u and v be any vectors in Rn. A
vector norm || · || is any mapping from Rn to R satisfying

46 Algebra Review

i. ||v|| ≥ 0 with equlity if and only if v = 0,
ii. ||cv|| = |c|||v|| for any scalar c, and
iii. ||u+ v|| ≤ ||u||+ ||v||.

A vector norm generalizes the notion of the magnitude of a vector and is a
specific instance of the more general mathematical notion of a distance (or a
metric) and, as such, the first two properties are very natural (see Definition
B.1.4). The third property is also a natural requirement for anything behaving
like a distance and is commonly called the triangle inequality (see Theorem
B.2.3).

We did use || · || to denote a generic norm in Definition 4.3.26 though we
used the same symbol to a specific norm when we addressed the length of a
vector in Definition 4.3.5. You will understand our choice to do this when you
see the next example. Note that the specific norm in Definition 4.3.5 is called
the Euclidean norm. We are now ready to introduce other vector norms.

Theorem 4.3.27 (Some Vector Norms). Let v = ⟨v1, v2, . . . , vn⟩ be any vector
in Rn. Then each of the following is a norm for the vector v:

||v||1 :=
n∑

i=1

|vi| the ℓ1 norm, (4.55)

||v||2 :=

(
n∑

i=1

|vi|2
)1/2

the ℓ2 or Euclidean norm, and (4.56)

||v||∞ := max
1≤i≤n

|vi| the ℓ∞ norm. (4.57)

The proof that these are norms is Exercise 4.15. An example of the norms
is not to be excluded, though.

Example 4.3.28. Let v = [4, 0,−4, 1]T be a vector in R4. Then

||v||1 = |4|+ |0|+ | − 4|+ |1| = 9, (4.58)

||v||2 =
√
42 + 02 + (−4)2 + 12 =

√
33, and (4.59)

||v||∞ = max{|4|, |0|, | − 4|, |1|} = 4. (4.60)

Also, let u = [5, 2,−1, 1]T . Then

||u||1 = |5|+ |2|+ | − 1|+ |1| = 9, (4.61)

||u||2 =
√
52 + 22 + (−1)2 + 12 =

√
31, and (4.62)

||u||∞ = max{|5|, |2|, | − 1|, |1|} = 5. (4.63)

Linear Algebra Basics 47

Note that many other vector norms exist and will be introduced as needed.
An important theorem for us regarding vector norms is

Theorem 4.3.29 (Equivalence of Vector Norms). Let || · || and || · ||∗ be vector
norms for any vector in a given finite dimensional vector space8 V . Then there
exist constants c and C such that

c||v|| ≤ ||v||∗ ≤ C||v|| (4.64)

for all v in V .

In the language of the discipline, Numerical Analysts summarize Theorem
4.3.29 by saying “all vector norms are equivalent”. This, of course, does not
mean that all norms give the same value or even that relative magnitudes are
preserved (for instance, in Example 4.3.28, ||v||1 = ||u||1, but ||v||2 > ||u||2,
and ||v||∞ < ||u||∞). What is meant by stating Theorem 4.3.29 as “all vector
norms are equivalent” is that if a sequence of vectors from a finite dimensional
vector space converges under any vector norm || · ||, then the sequence also
converges under any other vector norm || · ||∗.

It is also possible to consider the “magnitude” of a matrix.

Definition 4.3.30 (Matrix Norm). Let A and B be any matrices in Rm×n and
c any scalar. A matrix norm || · || is any mapping from Rm×n to R satisfying

i. ||A|| ≥ 0 with equality if and only if aij = 0 for all i and j,
ii. ||cA|| = |c|||A|| for any scalar c,
iii. ||A+B|| ≤ ||A||+ ||B||.

Theorem 4.3.31 (Some Matrix Norms). Let A be any matrix in Rm×n. Then
each of the following is a norm for the matrix A:

||A||1 := max
1≤j≤n

m∑
i=1

|aij | the ℓ1 norm (max column sum of magnitudes),

(4.65)

||A||F :=

√√√√ n∑
j=1

m∑
i=1

a2ij the Frobenius norm, and (4.66)

||A||∞ := max
1≤i≤n

m∑
j=1

|aij | the ℓ∞ norm (max row sum of magnitudes).

(4.67)

The proof that the examples in Theorem 4.3.31 are matrix norms is left
to Exercise 4.16. Note that ||A||F is not the ℓ2 matrix norm. The ℓ2 matrix

8We discuss vector spaces in the next section.

48 Algebra Review

norm requires more machinery and will not be discussed here. Also, as with
vectors, many matrix norms exist and we will also introduce those as needed.

There is plenty to say about the relationship between matrix and vector
norms, but first an example.

Example 4.3.32. Let A =

 1 −1 3 4
2 1 −5 3
−2 −2 −8 7

. Then
||A||1 = max

1≤j≤4

3∑
i=1

|aij | (4.68)

= max{|1|+|2|+| − 2|, | − 1|+|1|+| − 2|, |3|+| − 5|+| − 8|, |4|+|3|+|7|}
(4.69)

= max{5, 4, 16, 14} = 16, (4.70)

||A||F =
√

12+(−1)2+32+42+22+12+(−5)2+33+(−2)2+(−2)2+(−8)2+72

(4.71)

=
√
187 and (4.72)

||A||∞ = max
1≤i≤3

4∑
j=1

|aij | (4.73)

= max{|1|+| − 1|+|3|+|4|, |2|+|1|+| − 5|+|3|, | − 2|+| − 2|+| − 8|+|7|}
(4.74)

= max{9, 11, 19} = 19. (4.75)

As with vector norms, matrix norms are equivalent.

Theorem 4.3.33 (Equivalence of Matrix Norms). Let ||·|| and ||·||∗ be matrix
norms for any finite dimensional matrix space9 M . Then there exist constants
c and C such that

c||A|| ≤ ||A||∗ ≤ C||A|| (4.76)

for all A in M .

As this chapter can be skimmed, we will restate what was said regarding
the equivalent theorem for vectors. Numerical Analysts summarize Theorem
4.3.33 by saying “all matrix norms are equivalent”. This does not mean that
all matrix norms yield the same value for a given matrix or even that rela-
tive magnitudes between matrices are preserved. What is meant by stating
Theorem 4.3.33 as “all matrix norms are equivalent” is that if a sequence of
matrices from a finite dimensional space converges under any matrix norm
|| · ||, then the sequence also converges under any other matrix norm || · ||∗.

A special relationship exists between matrix and vector norms. Let A be a
matrix in Rm×n and v a vector in Rn; that is, an n× 1 matrix. Their product

9By matrix space we mean “think of each matrix as a big vector”.

Linear Algebra Basics 49

Av = b is a vector in Rm (i.e. a m × 1 matrix). Suppose || · ||(n) is a vector
norm in Rn and || · ||(m) is a vector norm in Rm. We may introduce a matrix
norm based on || · ||(n) and || · ||(m); that is,

||A|| := sup
v∈Rn

v ̸=0

||Av||(m)

||v||(n)
(4.77)

where the v range over all nonzero vectors in Rn.
Normalizing v and using property ii) of vector norms (Definition 4.3.26),

4.77 becomes

||A|| := sup
v∈Rn

v ̸=0

||Av||(m)

||v||(n)
= sup

v∈Rn

v ̸=0

|| Av
||v||(n)

||(m)

||v||(n)/||v||(n)
= sup

x∈Rn

||x||(n)=1

||Ax||(m)

||x||(n)

= sup
x∈Rn

||x||(n)=1

||Ax||(m). (4.78)

Thus we have the following

Definition 4.3.34 (Induced Matrix Norm). Let || · || be a vector norm over
Rn and let A be an n× n matrix. Then the matrix norm induced by || · || is

||A|| := sup
x∈Rn

||x||(n)=1

||Ax||.

Induced matrix norms are also commonly called subordinate matrix norms
and have additional properties over non-induced matrix norms (though some
non-induced norms satisfy some of these):

Remark 4.3.35. Let || · || be an induced matrix norm and A and B two
matrices subject to the norm and v any vector subject to the original vector
norm. Then

i) ||I|| = 1,
ii) ||Av|| ≤ ||A|| ||v|| (i.e. the norm is scalable), and
iii) ||AB|| ≤ ||A|| ||B||(i.e. the norm is multiplicative).

Let us now determine an induced matrix norm from a given vector norm.

Example 4.3.36. Let x = ⟨x1, x2, . . . , xn⟩ be a vector in Rn and let A be an
m×n matrix whose colums are a1, . . . ,an. Put M = max1≤j≤m {

∑n
i=1 |aij |};

that is, M is the max column sum of absolute values of the entries in A. Then

50 Algebra Review

the matrix norm induced by the ℓ1 vector norm is

||A|| := sup
x∈Rn

||x||(n)=1

||Ax||1 (4.79)

= sup
x∈Rn

||x||(n)=1

||x1a1 + x2a2 · · ·+ xnan||1 (4.80)

≤ sup
x∈Rn

||x||(n)=1

|x1|||a1||1 + |x2|||a2||1 · · ·+ |xn|||an||1 (4.81)

≤ sup
x∈Rn

||x||(n)=1

|x1|M + |x2|M · · ·+ |xn|M (4.82)

= sup
x∈Rn

||x||(n)=1

(|x1|+ |x2| · · ·+ |xn|)M (4.83)

= sup
x∈Rn

||x||(n)=1

1 ·M (4.84)

= M = ||A||1 (4.85)

since the maximum is obtained by letting x = ek where k is a column ak whose
sum of absolute values is M .

Showing that the vector norm || · ||∞ induces the ℓ∞ matrix norm is the
same argument as in Example 4.3.36 except M is the maximum row sum of
absolute values. Note that the matrix norm induced by the ℓ2 (Euclidean)
vector norm is not the Frobenius norm, but rather the ℓ2 or spectral matrix
norm. We will introduce the spectral norm as needed as it involves more
machinery than we currently have.

Equipped with matrix norms, we may now introduce the important con-
cept of the condition number of a matrix.

Definition 4.3.37 (Condition Number of a Matrix). Let A be an invertible
matrix and || · || any induced matrix norm or the Frobenius norm10. Then the
condition number of A is

κ(A) := ||A|| ||A−1||.

The reason this is called a condition number is as follows: suppose we are
solving a linear system Ax = b, with A invertible, and supposed x is slightly
perturbed, that is, it experiences a small change, say ∆x. Then to find the
perturbation of b (call it ∆b)

A(x+∆x) = Ax+A∆x = b+∆b (4.86)

10The condition number of a matrix can be defined using any matrix norm but the
conditional number is only useful if satisfies property ii) in Remark 4.3.35. It can be shown
that the Frobenius norm satisfies property ii) – see Exercise 4.18.

Linear Algebra Basics 51

and since b = Ax, we get
A∆x = ∆b. (4.87)

Thus ∆x = A−1∆b and for any induced matrix norm or the Frobenius norm
[or any norm satisfying property ii) in Remark 4.3.35]

||∆x|| = ||A−1∆b|| ≤ ||A−1|| ||∆b||. (4.88)

Moreover, since b = Ax we again have by property ii)

||b|| = ||Ax|| ≤ ||A|| ||x|| (4.89)

giving
1

||x||
≤ ||A||
||b||

. (4.90)

Combining 4.88 and 4.90 gives

||∆x||
||x||

≤ ||A|| ||A−1|| ||∆b||
||b||

= κ(A)
||∆b||
||b||

. (4.91)

Notice that what 4.91 tells us is that ratio of the perturbation of the change
in the constants on the right hand side of Ax = b can lead to a perturbation
of the solution x by up to a factor of κ(A); that is, any matrix with a large
condition number can have a big change in the solution x given a small change
in the right hand side constants b. This translates to computer usage in that
a small round-off error could lead to a serious error in the solution of a linear
system. Such matrices are said to be ill-conditioned and, as a rule of thumb,:

Highlight 4.3.38 (Rule of Thumb for the Condition Number of a Matrix).
If the condition number of a matrix A = κ(A) = 10s, then one can expect to
loose up to k digits of precision in the computer solution of Ax = b.

Matrices that have small condition numbers are said to be well-conditioned
matrices.

Example 4.3.39 (Ill-conditioned Matrix). For a positive integer n, consider
the nth Hilbert matrix

Hn :=


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
4

1
6

1
4

1
4

1
6

1
7

 .

Hn turns out to be an ill-conditioned matrix. An easy way to see this is
to solve the matrix equation H4X = I. We note that when a computer does
arithmetic, it does not store a fraction and only has a finite amount of memory
to store a decimal. Moreover, it sees each number in scientific notation, as in
2.2598× 107.11 If we assume the computer is has five digits in its significand,
it will store 1/3 as 0.33333 and the calculation 12.154+0.011237 as 12.165.12

11Of course, the computer is seeing the number in binary, but we are not going to worry
about that detail here.

12The real situation is a little more involved than this. See [1], for example, and IEEE
single precision floating point representation.

52 Algebra Review

If we assume five digits in the significand, then the calculated solution is

X = H−1
n I = Ĥ−1

n =


16.248 −122.72 246.49 −144.20
−122.72 1229.9 −2771.3 1726.1
246.49 −2771.3 6650.1 −4310.0
−144.20 1726.1 −4310.0 2871.1

 .

The true solution is

X = H−1
n I = H−1

n =


16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800

 .

Calculating the condition number using the ℓ1 norm

κ(H4) = ||H4||1||H−1
4 ||1 =

(
1 +

1

2
+

1

3
+

1

4

)
(240 + 2700 + 6480 + 4200)

= 28375 ≈ 104.4529. (4.92)

As s ≈ 4 for H4, by Highlight 4.3.38, we can expect a loss of accuracy in up to
four of the significant digits (from the right) of some of the calculated values.
For H4, this occurs three times and is illustrated with the highlight entries of
the calculate Ĥ−1

4 and the true H−1
4 .

4.3.5 Vector Spaces

We have discussed the basic algebra of vectors. The collections of these objects
often behave nicely and lead to the following definition.

Definition 4.3.40 (Vector Space). A set of vectors V together with a set of
scalars (numbers) S is a vector space if for all u,v,w ∈ V and a, b ∈ S

1. u+ v is in V (i.e. V is closed under vector addition);
2. u+ v = v + u (vector addition is commutative);
3. u+ (v +w) = (u+ v) +w (vector addition is associative);
4. there exist a vector 0 in V such that u+0 = u (existence of an additive

vector identity);
5. there exist a vector −u in V such that −u+u = 0 (existence of additive

vector inverses);
6. au is in V (closure under scalar multiplication);
7. 1u = u (existence of a scalar multiplicative identity);
8. a(u + v) = au + av (scalar multiplication distributes over vector

addition);
9. (a + b)u = au + bu (scalar multiplication distributes over scalar

addition); and
10. a(bu) = (ab)u (associativity of scalar multiplication).

Linear Algebra Basics 53

A subset of a vector space which is itself a vector space is called a sub-
space .

A natural next step is to introduce the essence of a vector space, that is
the important idea of a basis of a vector space. For this we need a few more
definitions.

Definition 4.3.41 (Linearly Independent). A nonempty set of vectors
{v1,v2, . . .vn} in a vector space V is linearly independent if and only if
the only coefficients satisfying

c1v1 + c2v2 + · · ·+ cnvn = 0

are c1 = c2 = · · · = cn = 0. Vectors that are not linearly independent are said
to be linearly dependent.

Example 4.3.42. In R2, the vectors u1 = ⟨1, 1⟩ and u2 = ⟨2,−1⟩ are linearly
independent as the only solution to c1u1 + c2u2 = 0 is c1 = c2 = 0 (try it!).
The set of vectors {u1,u2.u3} where u3 = ⟨1,−2⟩ is a set of linearly dependent
vectors as 1u1 − 1u2 + 1u3 = 0.

Definition 4.3.43 (Span). For vectors v1,v2, . . .vn in a vector space V with
scalars S, the span of v1,v2, . . .vn is the set of all linear combinations of
v1,v2, . . .vn with coefficients from S. That is,

span(v1,v2, . . .vn) = {c1v1 + c2v2 + . . . cnvn | ci ∈ S}.

Example 4.3.44. The vectors u1 = ⟨1, 1⟩ and u2 = ⟨2,−1⟩ span R2 as any
arbitrary vector ⟨x, y⟩ of R2 can be expressed as a linear combination of u1

and u2 by ⟨x, y⟩ = x+2y
3 ⟨1, 1⟩+

x−y
3 ⟨2,−1⟩.

Definition 4.3.45 (Basis). A set of vectors U in a vector space V is a basis
of V if

1. U spans V and
2. U is a linearly independent set of vectors.

Example 4.3.46. From Example 4.3.42 and Example 4.3.44, we see that the
vectors u1 = ⟨1, 1⟩ and u2 = ⟨2,−1⟩ form a basis of R2.

Note that ⟨1, 0⟩ and ⟨0, 1⟩ also form a basis of R2 and thus a basis of a
vector space need not be unique.

Armed with the definitions we may now state some very important theo-
rems. The proofs of these theorems can be found in any Linear Algebra text.

Theorem 4.3.47. If a vector space has a finite basis, then all bases of the
vector space have the same number of vectors.

Because of this theorem, the number of vectors in a basis for a vector space
V is said to be the dimension of V , written dim(V).

54 Algebra Review

We note that as a matter of convention, we define dim(∅) = −1.
Let matrix A have real entries in m rows and n columns. We refer to A

as an m × n matrix. The span of the columns of A is a subspace of Rm and
is called the column space of A which is usually denoted col(A). Similarly
row(A) is the row space of A, that is, the subspace of Rn spanned by the
rows of A. The solution set to the homogeneous system of equations Ax = 0
is a subspace of Rn and is called the null space of A and is denoted null(A).
Note that 0 is in the null space of A for every matrix A.

Equipped with these, we may state

Theorem 4.3.48. The elementary row operations (listed in Theorem 4.2.2)
do not change the row or null space of a matrix.

Note well that the previous theorem did not mention the column space of
a matrix. The reason for its absence is that elementary row operations may
change the column space of a matrix; as seen in the next example.

Example 4.3.49 (Row Operations can change the Column Space).
Consider the matrix

A =

 1 0 1
0 1 0
1 1 1

 .

To determine the column space of A let a, b, and c be arbitrary scalars. Then

a

 1
0
1

+ b

 0
1
1

+ c

 1
0
1

 =

 a+ c
b

a+ b+ c

 . (4.93)

Thus

Col(A) =


 s

t
s+ t

 : s, t ∈ R

 (4.94)

(so s = a+ c and b = t). Thus, for example, [1, 2, 3]T ∈ Col(A).
The standard row reductions on A give

A
−R1−R2+R3→R3−−−−−−−−−−−−→

 1 0 1
0 1 0
0 0 0

 =: A∗ (4.95)

but now we have

Col(A∗) =


 s

t
0

 : s, t ∈ R

 (4.96)

and this time [1, 2, 3]T /∈ Col(A∗).

Linear Algebra Basics 55

We note that it is easy to see that Row(A∗) = {[s, t, s|s, t ∈ R]. If we
multiply arbitrary scalars times the rows of A we get

a[1, 0, 1] + b[0, 1, 0] + c[1, 1, 1] = [a+ c, b+ c, a+ c] (4.97)

and we can get [s, t, s] by putting a = s, b = t, and c = 0. This shows
Row(A) = Row(A∗).

A remarkable fact about any matrix is

Theorem 4.3.50. The row space and column space of a matrix have the same
dimension.

The common dimension of the row and column spaces of a matrix A is
called the rank of A and written rank(A). We then have

Corollary 4.3.51. For any matrix A, rank(AT) = rank(A).

Proof.

rank(AT) = dim(row(AT)) = dim(col(A)) = rank(A).

The dimension of the null space of A is also named and is called the nullity
of A and is denoted nullity(A).

And lastly the beautiful

Theorem 4.3.52 (The Rank Theorem). For any m× n matrix A,

rank(A) + nullity(A) = n.

If our matrix A is the coefficient matrix of a system of linear equations,
the Rank Theorem tells us how many free variables and how many parameters
the system’s solution has. We illustrate this with an example.

Example 4.3.53. Find all solutions to the following system: x1 +x3 +2x4 = 13
5x1 +x2 +7x3 +14x4 = 79

12x1 +2x2 +19x3 +38x4 = 196.

Solution. The system has as its augmented matrix [A|b] 1 0 1 2 13
5 1 7 14 79

12 2 19 38 196



56 Algebra Review

and using Gauss-Jordan Elimination 1 0 1 2 13
5 1 7 14 79
12 2 19 38 196

 −12R1+R3→R3−−−−−−−−−−→
−5R1+R2→R2

 1 0 1 2 13
0 1 2 4 14
0 2 7 14 40

 (4.98)

−2R2+R3→R3−−−−−−−−−−→

 1 0 1 2 13
0 1 2 4 14
0 0 3 6 12

 (4.99)

1
3R3→R3−−−−−−→

 1 0 1 2 13
0 1 2 4 14
0 0 1 2 4

 (4.100)

−2R3+R2→R2−−−−−−−−−−→
−R3+R1→R1

 1 0 0 0 9
0 1 0 0 6
0 0 1 2 4

 . (4.101)

The rows of A are (as vectors) [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 2] which are
clearly linearly independent. Hence dim[row(A)] = 3. The columns of A
are (again, as vectors) [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [0, 0, 2]T but by Theorem
4.3.50, dim[col(A)] = 3 therefore this set is not linearly independent. Remov-
ing [0, 0, 1]T or [0, 0, 2]T fixes this, so we choose [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T

as a basis for col(A). By the Rank Theorem, since rank(A) = 3, null(A) =
4 − 3 = 1. Thus we have one free variable and require one parameter. For
convenience, it is easiest to choose x4 as the free variable thus we put x4 = t.
Thus the solution set for the system is

x1 = 9, x2 = 6, x3 = 4− 2t, x4 = t where t is any real number.

■

As if the Rank Theorem is not beautiful enough, we offer the following
theorem that brings together much of what we have just discussed.

Theorem 4.3.54 (The Fundamental Theorem of Invertible Matrices). If A
is an n× n matrix, then the following are equivalent:

i. A is invertible.
ii. Ax = b has a unique solution for every b in Rn.
iii. Ax = 0 has only the trivial solution.
iv. The reduced row echelon form of A is In.
v. A is the product of elementary matrices.
vi. rank(A) = n
vii. nullity(A) = 0
viii. The column vectors of A are linearly independent.
ix. The column vectors of A span Rn.
x. The column vectors of A are form a basis for Rn.
xi. The row vectors of A are linearly independent.

Matrix Properties Important to Optimization 57

xii. The row vectors of A span Rn.
xiii. The row vectors of A are form a basis for Rn.
xiv. det(A) ̸= 0
xv. 0 is not an eigenvalue of A.

We could also include in the theorem results involving linear transforma-
tions, but as they are not relevant to this text we have chosen to leave them
out. A result involving eigenvalues has been included, which we discuss next.

4.4 Matrix Properties Important to Optimization

4.4.1 Eigenvalues

We have seen that matrix multiplication can be quite cumbersome where
scalar multiplication is quite kind. Would it not be wonderful if matrix mul-
tiplication could be replaced by scalar multiplication? Indeed this would be a
dream, and – in general – is asking too much, but there are situations where
this dream is a reality and the properties that follow are almost magical.

Let A be an n×n matrix with real entries. A scalar λ satisfying Ax = λx
for some nonzero x in Rn is called an eignenvalue of A with x called an
eigenvector of A corresponding to λ.

Example 4.4.1. Consider the matrix A =

[
2 3
2 1

]
.

Since [
2 3
2 1

] [
3
2

]
=

[
12
8

]
= 4

[
3
2

]
, (4.102)

λ = 4 is an eigenvalue of A and x = [3, 2]T is an eigenvector of A correspond-
ing to the eigenvalue λ = 4.

If x ̸= 0 is an eigenvector of the n × n matrix A corresponding to the
eigenvalue λ, then

Ax = λx⇐⇒ [A− λI]x = 0 (4.103)

which means13 that eigenvalues λ of A must satisfy det [A− λI] = 0.

Example 4.4.2. Let A be the matrix in Example 4.4.1. Since

det

[
2− λ 3
2 1− λ

]
= λ2 − 3λ− 4 = 0 (4.104)

has λ = 4,−1 as solutions, the eigenvalues of A are λ = 4 and λ = −1.

13For the details missing here, see any Linear Algebra text.

58 Algebra Review

Though finding eigenvalues will be enough for our work, for the sake of
completeness, let us find the eigenvectors corresponding to the eigenvalue
λ = −1 for A in the example.

Example 4.4.3. Since Ax = λx, we have the matrix equation (A−λI)x = 0.
With the A from Example 4.4.1 and its eigenvalue λ = −1, this gives a linear
system which we solve by Guassian elimination:[

2− λ 3 0
2 1− λ 0

]
=

[
3 3 0
2 2 0

]
(4.105)

−→
[

1 1 0
1 1 0

]
(4.106)

−→
[

1 1 0
0 0 0

]
, (4.107)

This means that x1 + x2 = 0, thus x2 = −x1 and therefore any vector of the
form [c,−c] where c is any constant is an eigenvector corresponding to the
eigenvalue λ = −1 for the matrix A (try it!).

The example was not an anomaly; for a given eigenvalue there is always a
corresponding set of associated eigenvectors.

Though, as stated, we will have no use for eigenvectors, we will see how
nicely eigenvalues can be used to quickly solve optimization questions in Chap-
ter 12.

4.4.2 Unimodular Matrices

We now explore a type of matrix will be important to our study of network
flow problems, especially after we understand how difficult integer linear pro-
gramming is.

Definition 4.4.4 (Unimodular Matrices). A unimodular matrix of order n
is an n× n matrix with determinant ±1.

Example 4.4.5. The matrix A =

[
5
3

1
4

7
2

9
8

]
is unimodular since det(A) =

5
3 ·

9
8 −

7
2 ·

1
4 = 1.

To see how wonderful unimodular matrices turn out to be, let us consider
solving a 2 × 2 system of linear equations Ax = b where A is unimodular
and of full rank (i.e. the row vectors and column vectors of A are linearly
independent and thus there exists a unique solution). Moreover, let us further
suppose A and b have integer entries.

Example 4.4.6. Suppose for the 2× 2 linear system Ax = b that A is of full
rank, unimodular, and that A and b have integer entries. We then have[

a b
c d

]
·
[
x1

x2

]
=

[
b1
b2

]

Matrix Properties Important to Optimization 59

and by Cramer’s Rule (Theorem 4.3.24)

x1 = det(Ai)/ det(A) = ±(b1d− b2b) (4.108)

x2 = det(Ai)/ det(A) = ±(ab2 − cb1) (4.109)

where det(A) = ±1 because A is unimodular. Since a, b, c, d, b1, and b2 are
all integers, x1 and x2 must be integers as well.

If we had introduced the notion of adjoint (or adjugate) matrices, it would
not be hard to prove by Cramer’s Rule that if A is a unimodular matrix with
integer entries then A−1 is also unimodular and has integer entries. In fact,
it is the case that for a given order n, the collection of all n × n unimodular
matrices with integer entries form a group14, the general linear group, which
is denoted GLn(Z). More relevant to our work, though, are the conditions
which will guarantee integer solutions to a linear system.

Things worked very nicely in Example 4.4.6 but this was because we had
a system that was 2 × 2. Larger ordered systems will require more work, so
we need a stronger requirement to guarantee integer solutions. By Cramer’s
Rule (Theorem 4.3.24), we can solve a linear system using determinants and
by Expansion by Minors (Theorem 4.3.18) we can reduce the determinant of
any matrix down to linear combinations of determinants of 2×2 submatrices.
Thus a way to get integer solutions to a larger system it would be a wonderful
thing if every square submatrix of A had a determinant of 0 or ±1. This leads
to the following definition.

Definition 4.4.7 (Totally Unimodular Matrices). An m×n matrix is totally
unimodular if the determinant of any square submatrix is 0, 1, or −1.

The definition of a totally unimodular matrix can be stated in an alternate
form that is worth emphasizing.

Highlight 4.4.8. We may alternatively state that a matrix is totally unimod-
ular if every square, non-singular submatrix is unimodular.

Example 4.4.9. Clearly any identity matrix is totally unimodular. For a

nontrivial example, let us show A =

1 −1 0
0 1 −1
1 0 1

 is totally unimodular.

Solution. By Exercises 20.9 and 20.10, A has
(
6
3

)
= 20 square submatrices.

We will not be concerned with the empty square submatrix and clearly the
nine 1× 1 matrices all have the proper determinant. Checking the remaining
10:

14A group is a set with a binary operation defined on its elements. A group has the prop-
erties that it is closed under the operation (matrix multiplication in this case), associative,
there is an identity, and every element has an inverse. This is addressed in Exercise 4.34.

60 Algebra Review

det

([
1 −1
0 1

])
= 1,det

([
0 −1
1 1

])
= 1,det

([
0 1
1 0

])
= −1, (4.110)

det

([
−1 0
0 1

])
= −1,det

([
1 0
1 1

])
= 1,det

([
1 −1
1 0

])
= 1, (4.111)

det

([
−1 0
1 −1

])
= 1,det

([
1 0
0 −1

])
= −1,det

([
1 −1
0 1

])
= 1, and

(4.112)([
1 −1
0 1

])
= 1 (4.113)

det(A) = 1 ·det
([

1 −1
0 1

])
−1 ·det

([
0 −1
1 1

])
+0 = 1−1+0 = 0 (4.114)

Since all square submatrices of A have determinant 0,1, or −1, A is totally
unimodular. ■

We had to check 10 nontrivial matrices in the example. A 4 × 4 matrix
will have

(
8
4

)
− 16 − 1 = 53 nontrivial square submatrices (though a totally

unimodular matrix need not be square) and a square matrix of order 5 will
have

(
10
5

)
− 25 − 1 = 226. Clearly a brute force approach to checking total

unimodularity is undesirable. Fortunately, we have this result due to I. Heller
and C.B. Tompkins from 1956 [33]:

Theorem 4.4.10. Let A be an m×n matrix with rows that can be partitioned
into two disjoint sets R1 and R2. Then if

• every entry in A is 0, 1, or −1,
• every column of A contains at most two nonzero entries,

• two nonzero entries of a column of A have the same sign, then the row
containing one of these entries is in R1 and the other entry’s row is in
R2, and

• two nonzero entries of a column of A have opposite signs, then the rows
of both of these entries are both in R1 or both in R2

then A is totally unimodular.

In the light of this theorem we can now see easily that the matrix in
Example 4.4.9 is totally unimodular by putting row 1 in R1, row 3 in R2

with row 2 of the matrix belonging to either of R1 or R2. We note that
P.D. Seymour’s 1980 paper [52] gives a complete characterization of totally

Keywords 61

unimodular matrices, thought the sufficient conditions in the previous theorem
are enough for us to do our work.

As mentioned in the paragraph preceding Definition 4.4.7, the importance
of a totally unimodular matrix A is that it guarantees integer solutions to
Ax = b when A and b have integer entries. The significance of this will
be more clear once we understand how much more difficult integer linear
programming is than linear programming. We will explore all of this in more
detail in Section 24.2.

4.5 Keywords

linear function, linear inequality, system of linear equations, solution set of a
system of linear inequalities, (un)bounded set, graph, corner/extreme point,
back substitution, Gauss-Jordan elimination, elementary row operations, row
echelon form versus reduced row echelon form, matrix, submatrix, m × n
matrix, transpose, symmetric matrix, Hermitian matrix, self-adjoint matrix,
(row/column) vector, scalar multiplication, dot product, magnitude of a vec-
tor, unit vector, normalizing a vector, matrix multiplication, (multiplicative)
identity, inverse, identity matrix, vector norm, matrix norm, induced matrix
norm, condition number κ(A) of a matrix A, ill-conditioned matrix, vector
space, subspace, linearly independent, span, basis, dimension, column space,
row space, null space, rank, nullity, eigenvalue, eigenvector.

4.6 Exercises

Exercise 4.1. Convert the following system of linear equations to a matrix
and solve:

x+ 2y + 3z = 4

4x+ 3y + z = 40

2x+ 3y + z = 10

Exercise 4.2. Use a graph to show why there is no solution to the system of
equations:

x+ 0y = 2

x+ y = 1

−1x+ y = 3

62 Algebra Review

Exercise 4.3. Let

A =

 1 −1 0
0 1 2
3 −1 4

 . (4.115)

Let A∗ be the reduce echelon form of A. As in Example 4.3.49, show that
Row(A) = Row(A∗) but Col(A) ̸= Col(A∗). Provide an example of a vector
that is in Col(A) but not in Col(A∗).

Exercise 4.4. We can associate the polynomial

f(x) = 5x3 + 2x2 − 3x+ 2

with the vector v = [5, 2,−3, 2]T . Find a matrix A such that Av = f ′(x).

Exercise 4.5. Let A be an m×n matrix and ei the i
th standard basis (column)

vector of Rn. Show that
Aei = ai (4.116)

where ai is the ith column of A.

Exercise 4.6. Show that for all u and v in Rn

u · v =
1

4
||u+ v||2 − 1

4
||u− v||2 (4.117)

where || · || is the Euclidean norm.

Exercise 4.7. Prove the following properties of the dot product for a,b, c ∈
Rn with c a scaler.

i) a · a = ||a||2 where || · || is the Euclidean norm
ii) a · b = b · a
iii) a · (b+ c) = a · b+ a · c
iv) (ca) · b = c(a · b) = a · (cb)
v) 0 · a = 0

Exercise 4.8. Prove Proposition 4.3.6 (HINT: use the Law of Cosines and
properties of the dot product).

Exercise 4.9. Find the inverse of

[
2 3
4 5

]
.

Exercise 4.10. Find the inverse of

1 −1 2
2 −3 4
3 −3 7

 .

Exercise 4.11. Let A be an n × n matrix, A ̸= 0, and consider the identity
matrix I = In as in Definition 4.3.10. Show

i) AI = A = IA and

Exercises 63

ii) if AI = A = IA and AI ′ = A = I ′A, then I = I ′.

(This exercise shows that i) I serves as an identity and ii) that identity ma-
trices are unique up to their order.)

Exercise 4.12. Let A be an n×n and suppose there exist B and B′ such that
AB = I = B′A. Show that B = B′. (Here B = A−1 and this exercise shows
that inverse matrices are unique.)

Exercise 4.13. Use the definition of a determinant (Definition 4.3.17) to
prove that one can find determinants by the General Expansion by Minors
(Theorem 4.3.18).

Exercise 4.14. Prove the properties of determinants in Theorem 4.3.23.

Exercise 4.15. For v in Rn, show that ||v||1, ||v||2, and ||v||∞ from Theorem
4.3.27 are vector norms.

Exercise 4.16. For A in Rm×n, show that ||A||1, ||A||F , and ||A||∞ from
Theorem 4.3.31 are matrix norms.

Exercise 4.17. Prove Remark 4.3.35.

Exercise 4.18. Show that the Frobenius matrix norm || · ||F introduced in
Theorem 4.3.31 satisfies property ii) of Remark 4.3.35.

Exercise 4.19. Let A =

 2 −1 0
−1 2 −1
0 −1 2

 . Determine the condition number

of A, κ(A), under || · ||1, || · ||F , and || · ||∞.

Exercise 4.20. Let B =

0 1 0
1 1 1
0 0 1

 . Determine the condition number of B,

κ(B), under || · ||1, || · ||F , and || · ||∞.

Exercise 4.21. Rework Example 4.3.39 but for H3. Your response should in-
clude the true H−1

3 , the calculated Ĥ−1
3 assuming five digits in the significand,

and κ(H3). Note the significant differences between Ĥ−1
3 and H−1

3 and how
this relates to κ(H3).

Exercise 4.22. Give an informal explanation as to why the length of a list of
linearly independent vectors must be less than or equal to length of a spanning
list of vectors.

Exercise 4.23. Show why or why not the set

{v ∈ R2 | v1, v2 ≥ 0}

where v1 and v2 are individual components of a vector, is a vector space.

64 Algebra Review

Exercise 4.24. Prove that the intersection of vector spaces is also a vector
space.

Exercise 4.25. Show that {[1, 2]T , [−2, 3]T } is a linearly independent set of
vectors.

Exercise 4.26. Consider the following set of vectors: {[1, 1, 0]T , [1, 0, 1]T ,
[0, 1, a]T }.

i) Show that the set is linearly independent if and only if a ̸= −1.

ii) Since the set is linearly dependent if a = −1, write [0, 1,−1]T as a linear
combination of [1, 1, 0]T and [1, 0, 1]T .

Exercise 4.27. Allow v ∈ Rn to be a vector. Show that A = vvT must be
positive semidefinite (see Definition 12.1.2); that is, both A = AT ≥ 0 and
xTAx ≥ 0 for all x ∈ Rn.

Exercise 4.28. Suppose we think of a matrix T as a function T : Rn → Rm.
If n > m, state whether you believe T would be injective or surjective (or
both) and give an informal reason as to why. Give another statement with
explanation for n < m.

Exercise 4.29. Let V be a vector space and S ⊆ V . Show that S is also a
vector space if and only if ax + by ∈ S whenever x,y ∈ S and a and b are
any scalars; that is S is a subspace of the vector space V if and only if S is
closed under linear combinations.

Exercise 4.30. Let S be a subspace of Rn, B = {v1, . . . ,vm} a basis for
S, and u an arbitrary vector in S. Show there exists a unique set of scalars
{c1, . . . , cm} such that u = c1v1 + · · ·+ cmvm.

Exercise 4.31. Prove Theorem 4.3.50.

Exercise 4.32. Let A =

[
1 1
4 −2

]
.

i) Find the eigenvalues of A.

ii) For each eigenvalue of A, find the set of corresponding eigenvectors.

Exercise 4.33. Let B =

1 0 0
0 −1 0
1 1 0

 .

i) Find the eigenvalues of A.

ii) For each eigenvalue of A, find the set of corresponding eigenvectors.

Exercise 4.34. In Abstract Algebra, a group is a set G together with a binary
operation ⋆ such that for any a, b, and c in G

i) a ⋆ b ∈ G (G is closed under ⋆),

Exercises 65

ii) (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) (⋆ is associative),

iii) there exists an e ∈ G such that a ⋆ e = a = e ⋆ a (there exist an identity
element), and

iv) there exists for each g ∈ G elements h and h′ such that g ⋆ h = e = h′ ⋆ g
and that h = h′ (every element has a left and right inverse and this
inverse is the same).

Show that the set of all unimodular matrices with integer entries GLn(Z) –
the general linear group – is, in fact, a group.

Exercise 4.35. Show each of the following matrices is unimodular (from
[61]).

i)

2 3 5
3 2 3
9 5 7

 .

ii)

16 3 4
8 2 3
9 1 1

 .

iii)

48 5 8
24 2 3
25 2 3

 .

iv)

 2 · 4n(n+ 1) 2n+ 1 4n
4n(n+ 1) n+ 1 2n+ 1

4n(n+ 1) + 1 n 2n− 1

 for any n.

Exercise 4.36. Show that

 1 0 1
0 1 −1
−1 0 1

 is totally unimodular.

5

Matrix Factorization

In Section 4.2, the reader was reminded of Gaussian Elimination to solve sys-
tems of linear equations. A large advantage of this technique is that it is easy
to instruct a computer to efficiently carry out these steps with good stability1

and, as such, this technique is important for numerical solutions to systems
of equations. Heavy computer usage to solve systems of equations as well as
their role in machine learning techniques are the motivation for this section.
We will consider LU factorization, QR factorization, and Cholesky decomposi-
tion but note that there are other factorizations that are not included here. It
is important to realize that the reason for writing matrices in these
forms is that it is not always best for a computer to solve things the
way you and I would solve them on paper. Various matrix factorizations
exist to make computer run time tractable as well as to minimize round-off
errors.

5.1 LU Factorization

Let us return to the example from Section 4.2 but rewrite it so that it is
obvious that row swaps are not needed.

Example 5.1.1. Use Gaussian Elimination to solve x1 − x2 + 3x3 = −4
3x1 − 5x2 + x3 = 18
−2x1 + x2 − x3 = 5

Solution. 1 −1 3 −4
3 −5 1 18
−2 1 −1 5

 −3R1+R2→R2−−−−−−−−−−→
2R1+R3→R3

 1 −1 3 −4
0 −2 −8 30
0 −1 5 −3

 (5.1)

− 1
2R2+R3→R3−−−−−−−−−−→

 1 −1 3 −4
0 −2 −8 30
0 0 9 −18

 (5.2)

1See the very last paragraph on well- and ill-conditioned matrices in the Vector and
Matrix Norms section of the last chapter (Section 4.3.4).

DOI: 10.1201/9780367425517-5 66

https://doi.org/10.1201/9780367425517-5

LU Factorization 67

Back substitution will once again led to the desired solution. ■

The elementary row operations used in the solution of Example 5.1.1 can
be expressed as the elementary matrices

E1 =

 1 0 0
0 1 0
2 0 1

 , E2 =

 1 0 0
−3 1 0
0 0 1

 , E3 =

 1 0 0
0 1 0
0 − 1

2 1

 .

Let A be the matrix representing the coefficients in the original system of
equations, x = [x1, x2, x3]

T , and b the constants. Then (5.1.1) can be written
Ax = b. Notice the left hand side of the augmented matrix in 5.2 is an upper
triangular matrix (i.e. the entries below the diagonal are each 0) which we
will denote U .

With this notation we may write the row operations in the Gaussian Elim-
ination as

E3E2E1A = U (5.3)

and thus
A = E1

−1E2
−1E3

−1U. (5.4)

Then
A = LU (5.5)

where

L = E1
−1E2

−1E3
−1 =

 1 0 0
3 1 0
−2 1

2 1

 (5.6)

with L a unit lower triangular matrix (i.e. the diagonal entries are 1 and the
entries above the diagonal are each 0) and from line 5.2

U =

 1 −1 3
0 −2 −8
0 0 9

 (5.7)

where U is upper-triangular. That is,

A =

 1 −1 3
3 −5 1
−2 1 −1

 =

 1 0 0
3 1 0
−2 1

2 1

 1 −1 3
0 −2 −8
0 0 9

 = LU. (5.8)

When a square matrix A can be factored into the product of a lower
triangular matrix L as its first factor and an upper triangular matrix U as
its second factor, we say A has an LU factorization. We will only concern
ourselves with square matrices in this text, but will mention that the notion
of LU factorization can be extended to nonsquare matrices by requiring U to
be in row echelon form.

A matrix does not always have an LU factorization and plenty is known
about the necessary conditions, but we will be satisfied with the following
condition:

68 Matrix Factorization

Theorem 5.1.2. If A is a square matrix requiring no row swaps in reducing
it to row echelon form, then A has an LU factorization.

You may have noticed that the numbers in L look pretty similar to the
constants used in the row operations. This is no accident.

Theorem 5.1.3. If A has an LU factorization and Rj −mijRi → Rj is a
row operation used to row reduce A, then mij is entry lij in matrix L.

That is, for i > j, the ijth entry in L is the multiplier used to eliminated
entry aij when row reducing A; so lij = mji.

Moreover, regarding the L and the U we have

Theorem 5.1.4. Suppose A = LU where L is unit lower triangular and U is
upper triangular. Then

• L is invertible,
• U is invertible if and only if A is invertible,
• L−1 is also lower triangular
• when it exists, U−1 is upper triangular, and
• the LUfactorization is unique.

It turns out that to determine a matrix’s LU factorization, we do not need
to work as hard as we did in Example 5.1.1 and the work that followed. In
particular, we do not need to perform Gaussian Elimination to determine the
multipliers that make up L.

Theorem 5.1.5. (Dolittle’s Method) Suppose an n× n matrix A has an LU
factorization, that is

a11 · · · a1j · · · a1n
a21 · · · a2j · · · a2n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann


=



1 0 · · · 0 · · · 0
m21 1 · · · 0 · · · 0
...

...
...

mi1 mi2 · · · 1 · · · 0
...

...
...

mn1 mn2 · · · mnj · · · 1



×



u11 u12 · · · u1n−1 u1n

0 u22 · · · u2n−1 u2n

...
...

...
...

...
...

...
...

0 0 · · · un−1n−1 un−1n

0 0 · · · 0 unn



Cholesky Decomposition 69

Then

u11=a11, u12=a12, u13=a13, · · · u1n=a1n

a21=m21u11, a22=m21u12 a23=m21u13 · · · a2n=m21u1n

+u22, +u23, +u2n

a31=m31u11, a32=m31u12 a33=m31u13 +m32u23 · · · a3n=m31u1n +m32u2n

+m32u22, +u33, +u3n

...
...

...
...

...

LU factorization can be used to solve a system of linear equations (see,
e.g., [1]). If Ax = b is a system of equations and A is an n×n matrix with an
LU factorization, then it can be shown that the operations count in solving the
system of equations is of the order 1

3n
3 which is of the same order as Gaussian

Elimination, but slightly quicker for large n. The LU factorization technique
has an advantage with memory storage as a computer can be programmed
to rewrite A as the entries of L and U are calculated. Furthermore, if A is
sparse – that is, many entries are 0 – then the LU factorization technique is
much quicker than Gaussian Elimination.

5.2 Cholesky Decomposition

Recall that a real matrix A is Hermitian if A = AT and positive-semidefinite
if xTAx > 0 for every nonzero column vector x. These matrices have a very
special property.

Theorem 5.2.1 (Cholesky Decomposition).
When A is a real Hermitian (symmetric) positive-definite matrix, there exist
a lower triangular matrix L̃ such that

A = L̃L̃T .

Moreover, this factorization2 is unique.

We will use a constructive proof to establish Cholesky Decomposition thus,
in addition to establishing the result, we will obtain an algorithm to calculate
L̃ for a given A.

2As stated when the definition of Hermitian was introduced, a little more is needed if
A can have complex values. In this case, the decomposition is A = LL∗ where L∗ is the
conjugate transpose of L. As in the real case, this L is unique.

70 Matrix Factorization

Proof.
Let A be real symmetric positive definite n × n matrix. Suppose A = L̃L̃T

where L̃L̃T is lower triangular. Then
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann

 =


l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · lnn



×


l11 l21 l31 · · · ln1
0 l22 l32 · · · ln2
0 0 l33 · · · ln3
...

...
...

. . .
...

0 0 0 · · · lnn

 (5.9)

By direct calculation we have

a11 = l211; (5.10)

a1i = l11li1 = ai1 for i = 2, 3, . . . , n; (5.11)

aii = [li1, li2, . . . , lii, 0, . . . , 0] · [li1, li2, . . . , lii, 0, . . . , 0]
= l2i1 + l2i2 + · · ·+ l2ii for i = 2, 3, . . . , n; and (5.12)

aij = [li1, li2, . . . , lij , . . . , lii, 0, . . . , 0] · [lj1, lj2, . . . , ljj , 0, . . . , 0]
= li1lj1 + li2lj2 + · · ·+ lij ljj for j = 2, . . . , n− 1 and j < i ≤ n. (5.13)

Thus

l11 =
√
a11; (5.14)

li1 =
ai1
l11

=
a1i
l11

for i = 2, 3, . . . , n; (5.15)

lii =

√√√√aii −
i−1∑
k=1

l2ik for i = 2, 3, . . . , n; and (5.16)

lij =

(
aij −

j−1∑
k=1

likljk

)
/ljj for j = 2, . . . , n− 1 and j < i ≤ n. (5.17)

Without providing the details, we mention that an induction argument
using the positive definiteness of A guarantees that all the square roots exist
(and the entries of L are therefore unique).

Orthogonality 71

Example 5.2.2. It can be shown that the matrix A =

 1 −2 −1
−2 13 2
−1 2 2

 is

positive-definite. As it is clearly symmetric, it has a Cholesky decomposition.
Using the proof of Theorem 5.2.1 we have

l11 =
√
a11 =

√
1 = 1, (5.18)

l21 =
a21
l11

=
−2
1

= −2, (5.19)

l22 =
√
a22 − l221 =

√
13− (−2)2 =

√
9 = 3, (5.20)

l31 =
a31
l11

=
−1
1

= −1, (5.21)

l32 =
a32 − l31l21

l22
=

2− (−1)(−2)
3

= 0, and (5.22)

l33 =
√
a33 − l231 − l232 =

√
2− (−1)2 − 02 = 1. (5.23)

Thus  1 −2 −1
−2 13 2
−1 2 2

 =

 1 0 0
−2 3 0
−1 0 1

1 −2 −1
0 3 0
0 0 1

 .

Since A = L̃L̃T , Cholesky decomposition can be viewed as “finding the
square root of a matrix”. More importantly, it can be shown that the run-
time to solve the system Ax = b, when A is symmetric positive-definite and
Cholesky decomposition can be used, is O(13n

3), which is twice as fast as
Gaussian elimination.

5.3 Orthogonality

The reader is most likely familiar with the notion of perpendicular and we
now discuss this property and its applications in the context of vectors. With-
out worrying about subtle mathematical details, let us regard orthogonal and
perpendicular to be synonymous.

Definition 5.3.1 (Orthogonal Vectors, Orthogonal Set). Let u and w be
vectors. If u · w = 0, then u and w are said to be orthogonal. A collection
{v1,v2, . . . ,vn} is an orthogonal set if the vectors are pairwise orthogonal;
that is if vi · vj = 0 for 1 ≤ i < j ≤ n.

Of course, things are just not perpendicular because we say so. Suppose
u,w ̸= 0 and that the vectors are orthogonal. Let θ be the angle between
the vectors. Then, by Proposition 4.3.6, 0 = ||u|| ||w|| cos θ, but since neither
vector is 0, cos θ = 0, giving θ = π

2 and u ⊥ w.

72 Matrix Factorization

Example 5.3.2. The standard basis vectors e1 = [1, 0, 0]T , e2 = [0, 1, 0]T ,
and e3 = [0, 0, 1]T of R3 form an orthogonal set.

Orthogonal sets are wonderful things; exactly because of the following
property.

Theorem 5.3.3. The vectors {v1,v2, . . . ,vn} of an orthogonal set of nonzero
vectors are linearly independent.

Proof. Suppose {v1,v2, . . . ,vn} is an orthogonal set of nonzero vectors and
that

c1v1 + c2v2 + · · ·+ cnvn = 0 (5.24)

for some collection of scalars c1, c2, . . . , cn. Thus for any i, 1 ≤ i ≤ n

0 = 0 · vi = (c1v1 + c2v2 + · · ·+ cnvn) · vi (5.25)

= c1(v1 · vi) + c2(v2 · vi) + · · ·+ cn(vn · vi) (5.26)

= c1 · 0 + · · · ci(vi · vi) + · · ·+ cn · 0 (5.27)

= ci(vi · vi) (5.28)

since the vectors form an orthogonal set. Moreover, since vi ̸= 0, ci = 0. This
holds for each i, thus

c1 = c2 = · · · = ci = · · · = cn = 0 (5.29)

and the vectors {v1,v2, . . . ,vn} form a linearly indpendent set.

As the vectors of on orthogonal set are linearly independent, it is natural
to discuss having these vectors as a basis.

Definition 5.3.4 (Orthogonal Basis). An orthogonal basis for a subspace S
of Rn is a basis of S that is an orthogonal set.

Example 5.3.5. Let V = {[2, 1,−1]T , [1,−1, 1]T , [0, 1, 1]T }. Since 2
1
−1

 ·
 1
−1
1

 = 0,

 1
−1
1

 ·
01
1

 = 0, and

 2
1
−1

 ·
01
1

 = 0,

V is an orthogonal set of vectors and by Theorem 5.3.3 the vectors in V are
linearly independent. Thus by the Fundamental Theorem of Invertible Matrices
(Theorem 4.3.54), V is a basis of R3.

Since are considering a basis

Theorem 5.3.6. Suppose S is a subspace of Rn, that u is in S, and that
V = {v1, . . . ,vm} is an orthogonal basis for S. Then there exist unique scalars
c1. . . . , cm such that

u = c1v1 + · · ·+ cmvm

where for each i, 1 ≤ i ≤ m,

ci =
u · vi

vi · vi
=

u · vi

||vi||
.

Orthogonality 73

Proof. Since V is a basis for S, by Exercise 4.30 there exist unique scalars
c1. . . . , cm such that u = c1v1 + · · ·+ cmvm. Thus for any i

u · vi = (c1v1 + · · ·+ cmvm) · vi (5.30)

= c1(v1 · vi) + · · ·+ cm(vm · vi) (5.31)

= ci(vi · vi) (5.32)

where the last equality follows because V is an orthogonal set. As V is an
orthogonal set, every vi is nonzero, thus ci = (u · vi)/(vi · vi) for each i.

Example 5.3.7. Write u = [4, 6,−4]T as a linear combination of the vectors
in V from Example 5.3.5.

Solution. By Example 5.3.5, V is an orthogonal basis for R3. Thus from The-
orem 5.3.6

c1 =
u · v1

v1 · v1
=

18

6
= 3, c2 =

u · v2

v2 · v2
=
−6
3

= −2, c3 =
u · v3

v3 · v3
=

2

2
= 1

(5.33)
so u = 3v1 − 2v2 + 1v3. ■

Finding the coefficients via a direct calculation – that is solving u = av1+
bv2 + cv3 – would be more tedious; hence the value of orthogonal bases.

Let us take a look at unit vectors parallel to the vectors in V from Example
5.3.5.

v1

||v1||
=

[√
6

3
,

√
6

6
,−
√
6

6

]T
,

v2

||v2||
=

[√
3

3
,−
√
3

3
,

√
3

3

]T
,

and
v3

||v3||
=

[
0,

√
2

2
,

√
2

2

]T
.

Thus

V∗ =


[√

6

3
,

√
6

6
,−
√
6

6

]T
,

[√
3

3
,−
√
3

3
,

√
3

3

]T
,

[
0,

√
2

2
,

√
2

2

]T
is an orthogonal set of unit vectors. We call such a set an orthonormal set . As
V was shown to be an orthogonal basis for R3, it is easy to see that V∗ is an
orthonormal basis for R3; that is, a basis of unit orthogonal vectors.

Much like Theorem 5.3.6, expressing a vector in terms of an orthonormal
basis is easy.

74 Matrix Factorization

Theorem 5.3.8. Suppose S is a subspace of Rn, that u is in S, and that
V∗ = {v1, . . . ,vm} is an orthogonal basis for S. Then

u = (u · v1)v1 + · · ·+ (u · vm)vm

,

Proof. Since V is a basis for S, by Exercise 4.30 there exist unique scalars
c1. . . . , cm such that u = c1v1 + · · ·+ cmvm. Thus for any i

u · vi = (c1v1 + · · ·+ cmvm) · vi (5.34)

= c1(v1 · vi) + · · ·+ cm(vm · vi) (5.35)

= ci(vi · vi) = ci (5.36)

where the last two equalities hold because V∗ is an orthonormal set.

Example 5.3.9. Write u = [4, 6,−4]T as a linear combination of the vectors
in the orthonormal basis of R3

V∗ =


[√

6

3
,

√
6

6
,−
√
6

6

]T
,

[√
3

3
,−
√
3

3
,

√
3

3

]T
,

[
0,

√
2

2
,

√
2

2

]T
.

 .

Solution. By Theorem 5.3.8,

 4
6
−4

 =


 4

6
−4

 ·


√
6
3√
6
6

−
√
6
6





√
6
3√
6
6

−
√
6
6

+


 4

6
−4

 ·


√
3
3

−
√
3
3√
3
3





√
3
3

−
√
3
3√
3
3


+


 4

6
−4

 ·
 0√

2
2√
2
2



 0√

2
2√
2
2

 (5.37)

= 3
√
6


√
6
3√
6
6

−
√
6
6

− 2
√
3


√
3
3

−
√
3
3√
3
3

+
√
2

 0√
2
2√
2
2

 . (5.38)

■

5.4 Orthonormal Matrices

Hopefully the reader understands the value of a basis of a vector space; namely,
since we can express any vector in the space as a unique linear combination of

Orthonormal Matrices 75

the basis vectors, we obtain results about the entire space by only considering
the basis vectors. Being able to form an orthogonal basis only sweetens the
deal.

In this section, we present an easy way to construct an orthonormal basis
and – as a bonus – also get a very useful factorization for matrices.

Definition 5.4.1 (Orthonormal Matrix). A square matrix Q whose columns
form an orthonormal set is called an orthonormal matrix.3

Example 5.4.2. Since the vectors in V∗ from Example 5.3.7 form an or-
thonormal set, the matrix

Q =


√
6
3

√
3
3 0

√
6
6 −

√
3
3

√
2
2

−
√
6
6

√
3
3

√
2
2


is an orthonormal matrix.

Though we are only concerned with square matrices in this text, we state
a more general version of the following theorem.

Theorem 5.4.3. An m × n matrix Q is an orthonormal matrix if and only
if QTQ = In.

Proof. We establish the theorem if we show that the appropriate entry of QTQ
is 0 or 1; that is

(QTQ)ij =

{
0 if i ̸= j

1 if i = j.
(5.39)

Let qi be the i
th column of Q. By matrix multiplication (see Definition 4.3.8),

(QTQ) = qi · qj . (5.40)

But Q is orthogonal if and only if

qi · qj =

{
0 if i ̸= j

1 if i = j
(5.41)

and we have the desired result by 5.40 and 5.41.

Theorem 5.4.3 has a very useful corollary:

Corollary 5.4.4. A square matrix Q is orthogonal if and only if Q−1 = QT .

3Older textbooks refer to these as orthogonal matrices, which they are. They are very
much more than orthogonal, though, and orthonormal is the most appropriate term to name
them.

76 Matrix Factorization

Example 5.4.5. The matrix Q in Example 5.4.2 is orthonormal, hence

QTQ =


√
6
3

√
6
6 −

√
6
6√

3
3 −

√
3
3

√
3
3

0
√
2
2

√
2
2




√
6
3

√
3
3 0

√
6
6 −

√
3
3

√
2
2

−
√
6
6

√
3
3

√
2
2

 =

1 0 0
0 1 0
0 0 1

 .

Moreover, by Corollary 5.4.4, we see that

Q−1 = QT =


√
6
3

√
6
6 −

√
6
6√

3
3 −

√
3
3

√
3
3

0
√
2
2

√
2
2

 .

Example 5.4.6.
Show

Q1 =

0 1 0
0 0 1
1 0 0

 , Q2 =

[
cos θ − sin θ
sin θ cos θ

]
are orthogonal matrices and find their inverses.

Solution. The columns of Q1 are the standard basis vectors of R3 and are
clearly orthonormal. Thus by Corollary 5.4.4

Q1
−1 = Q1

T =

0 0 1
1 0 0
0 1 0

 . (5.42)

Regarding Q2

Q2
TQ2 =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
(5.43)

=

[
cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ

− sin θ cos θ + cos θ sin θ cos2 θ + sin2 θ

]
(5.44)

=

[
1 0
0 1

]
(5.45)

thus by Theorem 5.4.3, Q2 is orthonormal, and by Corollary 5.4.4,

Q2
−1 =

[
cos θ sin θ
− sin θ cos θ

]
.

■

A few poignant comments regarding the matrices of the previous example
are in order. First, for any 3× n matrix A, the product Q1A is just A under
the row permutations (1, 3, 2); that is, R1 → R3, R3 → R2, and R2 → R1

(try it!). Such a matrix Q1 is called a permutation matrix and permutation

Orthonormal Matrices 77

matrices are always orthonormal (see Exercise 5.7). Secondly, for any vector v
in R2, the product Q2v is v rotated counterclockwise in R2 through an angle
θ. Since multiplication by Q2 is just a rotation, ||Q2v|| = ||v||; that is, it is
a length preserving transformation which is called an isometry . Since Q1 is
just a permutation of the rows of I, it is not surprising that its multiplication
with a vector preserves the length of the vector. It turns out this property is
true of all orthonormal matrices and, though not needed for our study, the
following theorem is too pretty not to state.

Theorem 5.4.7. Let Q be an n×n matrix. Then the following are equivalent:

i. Q is orthonormal.
ii. For all u and v in Rn,

Qu ·Qv = u · v.
iii. For all v in Rn,

||Qv|| = ||v||.

Before we begin the proof, we remind the reader that if u and v are both
column (or row) vectors in Rn, then uTv = u · v.

Proof. We show that i. and ii. are a biconditional as well as ii. and iii..
(i. ⇒ ii.) Suppose Q is orthonormal, then by Theorem 5.4.3 QTQ = I and
thus

Qu ·Qv = (Qu)TQv = (uTQT)Qv = uT (QTQ)v = uT Iv = uTv = u · v.
(5.46)

(ii.⇒ i.) Now suppose that for all u and v in Rn, Qu ·Qv = u · v and let ei
be the ith standard basis vector. Then by Exercise 4.5

qi · qj = Qei ·Qej = ei · ej =

{
0 if i ̸= j

1 if i = j
(5.47)

thus showing Q is orthonormal.
(ii. ⇒ iii.) Again suppose that for all u and v in Rn, Qu ·Qv = u · v. Thus
by Remark 4.3.7

||Qv|| =
√
Qv ·Qv =

√
v · v = ||v||. (5.48)

(iii.⇒ ii.) Here assume ||Qv|| = ||v|| for all v in Rn. By uusing Exercise 4.6
twice

u · v =
1

4

(
||u+ v||2 − ||u− v||2

)
(5.49)

=
1

4

(
||Q(u+ v)||2 − ||Q(u− v)||2

)
(5.50)

=
1

4

(
||Qu+Qv||2 − ||Qu−Qv||2

)
(5.51)

= Qu ·Qv. (5.52)

78 Matrix Factorization

For the sake of completeness, we add one more collection of beautiful
properties of orthonormal matrices.

Theorem 5.4.8. Let Q be an orthonormal matrix. Then

i. Q−1 is orthonormal;
ii. detQ = ±1;
iii. if λ is an eigenvalue of Q, then |λ| = 1; and
iv. if Q1 and Q2 are orthonormal n× n matrices, then so is Q1Q2.

5.5 The Gram-Schmidt Process

One of the more useful matrix factorizations relies on constructing an orthog-
onal basis for a given space. To build the idea, we could discuss the notion of
orthogonal complements and orthogonal projections as well as the Orthogonal
Decomposition Theorem, but as the aim of this text is not to teach a linear
algebra course, we refer the reader interested in such matters to any linear
algebra text and choose rather to just state the desired process.

One technique to build an orthogonal (or eventually orthonormal) basis is
the Gram-Schmidt Process. It is not without its shortcomings, which we will
discuss later.

Theorem 5.5.1 (Gram-Schmidt Process). Let {v1,v2, . . . ,vk} be a basis for
a subspace V of Rn. Define

u1 := v1 with U1 := span(v1), (5.53)

u2 := v2 −
u1 · v2

u1 · u1
u1 with U2 := span(v1,v2), (5.54)

u3 := v3 −
u1 · v3

u1 · u1
u1 −

u2 · v3

u2 · u2
u2 with U3 := span(v1,v2,v3), (5.55)

...
...

uk := vk −
u1 · vk

u1 · u1
u1 −

u2 · vk

u2 · u2
u2 with Uk := span(v1, . . . ,vk).

− · · · − uk−1 · vk

uk−1 · uk−1
uk−1 (5.56)

Then for each i, 1 ≤ i ≤ k, {u1, . . .ui} is an orthogonal basis for Ui.

Note that in particular, Theorem 5.5.1 says that the constructed collec-
tion of vectors {u1, . . .uk} is an orthogonal basis for the subspace V = Ui.
We obtain an orthonormal basis for V by following the same construction of
vectors and then normalize them; that is, if {u1, . . .uk} is an orthogonal basis
for a subspace V , then {q1, . . .qk} where qi := ui/||ui|| is an orthonormal
basis for V .

The Gram-Schmidt Process 79

The proof of Theorem 5.5.1 is not difficult can be done by Induction.
Unfortunately, the standard proof requires an understanding of orthogonal
projections and orthogonal complements as well as the Orthogonal Decompo-
sition Theorem and as these have not been introduced we omit the proof.

Before we begin the example, a helpful observation. If c is a nonzero scalar
and v is any vector, we know cv is parallel to v and thus multiplying any
vector in an orthogonal set preserves orthogonality.

Observation 5.5.2. If {u1, . . .uk} is an orthogonal set, then so is
{c1u1, . . . ckuk} for any nonzero scalars {c1, . . . , ck}.

Example 5.5.3. Use the Gram-Schmidt Process to construct an orthonormal
basis for the space V = span(v1,v2,v3) where

v1 =


1
0
−1
2

 ,v2 =


2
−1
0
1

 ,v3 =


1
−2
−1
0

 .

Solution. By Theorem 5.5.1,

u1 = v1 =


1
0
−1
2

 (5.57)

and

u2 = v2 −
u1 · v2

u1 · u1
u1 =


2
−1
0
1

− 2

3


1
0
−1
2

 =


4
3
−1

2
3
− 1

3

 . (5.58)

Since we are doing this by hand, we will take advantage of Observation 5.5.2
and use

u∗
2 = 3u2 =


4
−3
2
−1

 (5.59)

thus

u3 := v3 −
u1 · v3

u1 · u1
u1 −

u∗
2 · v3

u∗
2 · u∗

2

u∗
2

=


1
−2
−1
0

− 1

3


1
0
−1
2

− 4

15


4
−3
2
−1

 =


− 2

5

− 6
5

− 6
5

− 2
5

 . (5.60)

80 Matrix Factorization

Though not necessary, we will go ahead and scale u3

u∗
3 = −5

2
u =


1
3
3
1

 .

Thus by Gram-Schmidt


1
0
−1
2

 ,


4
−3
2
−1

 ,


1
3
3
1




is an orthogonal basis for V . Normalizing the vectors gives the orthonormal
basis 


√
6
6

0

−
√
6
6√
6
3

 ,


2
√
30

15

−
√
30
10√
30
15

−
√
30
30

 ,



√
5

10

3
√
5

10

3
√
5

10√
5

10




.

■

5.6 QR Factorization

Let A be an m×n matrix, m ≥ n, with full rank; that is, the n column vectors
{a1,a2, . . . ,an} of A are linearly independent. Then by the Gram-Schmidt
Process (Theorem 5.5.1) with normalizing the vectors, there exists vectors
{q1,q2, . . . ,qi} that form an orthonormal basis for span{a1,a2, . . . ,ai} for
each 1 ≤ i ≤ n. Thus there exists scalars r1, r2, . . . rn such that

a1 = r11q1, (5.61)

a2 = r12q1 + r22q2, (5.62)

... (5.63)

an = r1nq1 + r2nq2 + · · ·+ rnnqn. (5.64)

We can write our work in matrix form as

A = [a1,a2, . . . ,an] = [q1,q2, . . . ,qn]


r11 r12 · · · r1n
0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn

 (5.65)

QR Factorization 81

or A = QR where Q is an orthogonal matrix and R is upper triangular. This
is the inspiration behind the next theorem.

Theorem 5.6.1 (QR Matrix Factorization). Let A be a m × n matrix with
linearly independent columns (i.e. rank(A) = n ≤ m). Then the exist matrices
Q and R such that

A = QR

where

• Q is m× n orthogonal matrix and
• R and invertible upper triangular matrix.

Proof. The discussion before the theorem establishes there are matrices Q
and R such that A = QR with Q orthogonal and R upper triangluar. All that
remains is showing that R is indeed invertible. To reach this end, suppose
Rx = 0 where x = [x1, . . . , xn]

T . Then

Ax = QRx = Q0 = 0. (5.66)

But

Ax =


a11x1 + a12x2 + a13x3 + · · ·+ a1nxn

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn

...
an1x1 + an2x2 + an3x3 + · · ·+ annxn

 (5.67)

= a1x1 + a2x2 + · · ·+ anxn (5.68)

i.e. Ax is a linear combination of the column vectors of A. Since these are
linearly independent, if follows from Ax = 0 that x = 0. Thus by The Funda-
mental Theorem of Invertible Matrices (Theorem 4.3.54), R is invertible.

Example 5.6.2. Find the QR factorization of

A =


1 2 1
0 −1 −2
−1 0 −1
2 1 0


Solution. The columns of A are just the vectors of Example 5.5.3. Thus, by
the by the Gram-Schmidt Process as in the example

Q =


√
6
6

2
√
30

15

√
5

10

0 −
√
30
10

3
√
5

10

−
√
6
6

√
30
15

3
√
5

10√
6
3 −

√
30
30

√
5

10

 .

82 Matrix Factorization

Hence we have

A =


1 2 1
0 −1 −2
−1 0 −1
2 1 0

 =


√
6
6

2
√
30

15

√
5

10

0 −
√
30
10

3
√
5

10

−
√
6
6

√
30
15

3
√
5

10√
6
3 −

√
30
30

√
5

10


r11 r12 r13

0 r22 r23
0 0 r33

 = QR.

(5.69)
Thus

1 =

√
6

6
r11 (5.70)

giving r11 =
√
6. From the second row of Q

a22 = −1 = −
√
30

10
r22 (5.71)

so r22 = 10√
30

=
√
30
3 and by the third row of Q

a32 = 0 = −
√
6

6
r12 +

√
30

15
r22 (5.72)

giving

r12 =
6√
6
·
√
30

15
·
√
30

3
=

2
√
6

3
. (5.73)

Now we pause and point out that in spite of how clever we have been thus
far, we are working way too hard. Remember, in Mathematics, theorems are
our friends. By Theorem 5.4.3

QTA = QTQR = IR = R (5.74)

thus

R =


√
6
6 0 −

√
6
6

√
6
3

2
√
30

15 −
√
30
10

√
30
15 −

√
30
30√

5
10

3
√
5

10
3
√
5

10

√
5

10




1 2 1
0 −1 −2
−1 0 −1
2 1 0


=


√
6 2

√
6

3

√
6
3

0
√
30
3

4
√
30

15

0 0 − 4
√
5

5

 (5.75)

Thus

A =


1 2 1
0 −1 −2
−1 0 −1
2 1 0

 =


√
6
6

2
√
30

15

√
5

10

0 −
√
30
10

3
√
5

10

−
√
6
6

√
30
15

3
√
5

10√
6
3 −

√
30
30

√
5

10



√
6 2

√
6

3

√
6
3

0
√
30
3

4
√
30

15

0 0 − 4
√
5

5


= QR (5.76)

■

Keywords 83

The technique can be summarized as

Highlight 5.6.3. (QR Factorization) Suppose A is an m × n matrix whose
n column vectors are linearly independent. Then A = QR where

• Q is found by the Gram-Schmidt process (Theorem 5.5.1) and

• R = QTA.

Some comments regarding QR factorization and the Gram-Schmidt Pro-
cess are in order. First, if Q is a large matrix then it is very computationally
expensive to form QT so finding R as we did in (5.75) would be very computa-
tionally expensively and possibly intractable by this technique. Thus, if we are
writing a program we may prefer to follow what was done in (5.70) through
(5.73). This would work, but since we are using Gram-Schmidt to find Q, we
actually can work calculating the rij intro the Gram-Schmidt Process and take
care of two jobs at once. There is a concern with Gram-Schmidt, though, in
that it is very unstable; that is, a small round-off error in the calculation can
lead to a large error in the solution. As such, many good programs use what
is called the Modified Gram-Schmidt Process. A great presentation of what
we have addressed in this paragraph appears in [58]. As an alternate to the
Gram-Schmidt Process, one could use what is known as a Householder Trans-
formation to efficiently compute QR. A nice introduction to this technique
can be found in [44].

5.7 Keywords

lower triangular matrix, upper triangular matrix. LU factorization, Cholesky
Decomposition, constructive proof, orthogonal vectors, orthogonal basis, or-
thonormal vectors, orthonormal basis, orthonormal matrix, Gram-Schmidt
Process, QR factorization.

5.8 For Further Study

There is a concern with Gram-Schmidt, though, in that it is very unstable;
that is, a small round-off error in the calculation can lead to a large error in
the solution. As such, many good programs use what is called the Modified
Gram-Schmidt Process. A great presentation of what we have addressed in
this paragraph appears in [58]. As an alternate to the Gram-Schmidt Process,
one could use what is known as a Householder Transformation to efficiently
compute QR. A nice introduction to this technique can be found in [44].

84 Matrix Factorization

5.9 Exercises

Exercise 5.1. Let L be an arbitrary 3× 3 lower triangular matrix. Assuming
L−1 exists, show that L−1 is also lower triangular.

Exercise 5.2. Let U be an arbitrary 3×3 upper triangular matrix. Assuming
U−1 exists, show that U−1 is also upper triangular.

Exercise 5.3. Show that in Cholesky decomposition L̃ = LD1/2 where the L
and D are as in the LDLT factorization and D1/2 means the matrix whose
entries are the square roots of the entries in the matrix D.

Exercise 5.4. Let A =


1 0 2 0
0 4 0 4
2 0 13 0
0 4 0 5

. Find A’s LU , LDLT , and Cholesky

factorizations.

Solution: L =


1 0 0 0
0 1 0 0
2 0 1 0
0 1 0 1

, U =


1 0 2 0
0 4 0 4
0 0 9 0
0 0 0 1

, D =


1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 1

,

and L̃ =


1 0 0 0
0 2 0 0
2 0 3 0
0 2 0 1

.
Exercise 5.5. Prove that if Q is an orthonormal matrix its rows form an
orthonormal set.

Exercise 5.6. Let V∗ = {v1, . . . ,vm} be an orthonormal set in Rn and let u
be a vector in Rn. Prove Bessel’s Inequality

||u||2 ≥ |u · v1|2 + · · ·+ |u · vm|2

with equality if and only if u ∈ span(V∗).

Exercise 5.7. A permutation matrix is any matrix formed by permuting
(swapping) the rows of I. Show that any permutation matrix is necessarily
orthogonal.

Exercise 5.8. Use the Gram-Schmidt Process to construct an orthonormal
basis for the space V = span(v1,v2,v3) where

v1 = [3, 0, 4],v2 = [−1, 0, 7],v3 = [2, 9, 11].

Note that a solution is [3, 0, 4], [−4, 0, 3], [0, 9, 0].

Part II

Linear Programming

http://taylorandfrancis.com

6

Linear Programming

After optimizing a function of single or multiple variables (considered for
review in Chapter 9) , the least sophisticated optimization problems are con-
cerned with either minimizing or maximizing a linear function which satisfy
conditions modeled by linear inequalities. There are numerous practical prob-
lems which fall into this category and for these reasons we begin our study of
Optimization here.

6.1 A Geometric Approach to Linear Programming in
Two Dimensions

To illustrate the material, let us consider the following example:

6.1.1 Example

Example 6.1.1 (Lincoln Outdoors). Lincoln Outdoors, a camping merchan-
dise manufacturer, makes two types of sleeping bags: the Cabin Model for light
camping and the Frontier Model for more rugged use. Each Cabin sleeping
bag requires 1 labor-hour from the cutting department and 2 labor hours from
the assembly department whereas each Frontier model requires 2 labor-hour
from the cutting department and 3 labor hours from the assembly department.
The per day maximum amount of labor hours for the cutting department is 40
labor-hours where the assembly department has 72 labor-hours available per
day. The company makes a profit of $60 on each Cabin model it sells and
a profit of $90 on each Frontier model sold. Assuming that all sleeping bags
that are manufactured will sell, how many bags of each type should Lincoln
Outdoors manufacture per day in order to maximize the total daily profit?

Solution. We may summarize the information as follows:
The first step will be to identify the decision variables for the model.

In this situation, let us put

DOI: 10.1201/9780367425517-6 87

https://doi.org/10.1201/9780367425517-6

88 Linear Programming

TABLE 6.1
Manufacturing Data for Lincoln Outdoors in Example 6.1.1

Labor-Hours Cabin Model Frontier Model Max Hours per Day

Cutting Dept. 1 2 40
Assembly Dept. 2 3 72

Profit per Bag $60 $90

x1 = the number of Cabin Model sleeping bags manufactured per day and

x2 = the number of Frontier Model sleeping bags manufactured per day.

We next form our objective function , that is the function we wish to opti-
mize. In this situation our objective function is

P (x1, x2) = 60x1 + 90x2. (6.1)

According to this function, profit can be made arbitrarily large by letting x1

or x2 grow without bound. Unfortunately, the situation has restrictions due
to the amount of available labor-hours. Thus we have the following problem
constraints:

Cutting Department Constraints: x1 + 2x2 ≤ 40 and (6.2)

Assembly Department Constraints: 2x1 + 3x2 ≤ 72. (6.3)

As well, we have the non-negativity constraints1 that

x1 ≥ 0 and (6.4)

x2 ≥ 0. (6.5)

These constraints are usually expressed with the single statement

x1, x2 ≥ 0.

Thus the mathematical model for the problem we are considering is

Maximize: P (x1, x2) = 60x1 + 90x2 (6.6)

Subject to: x1 + 2x2 ≤ 40 (6.7)

2x1 + 3x2 ≤ 72 (6.8)

x1, x2 ≥ 0. (6.9)

The graph of this system of linear inequalities given by the constraints is
known as the feasible region .

1Certainly we also have the natural constraint that the number of sleeping bags be
integer-valued, but this is a matter for Chapter 8.

A Geometric Approach to Linear Programming in Two Dimensions 89

FIGURE 6.1
Feasible region for Lincoln Outdoors.

Now it is a wonderful thing that we are able to graph the feasible region
and thus know the set of solutions to the system of linear inequalities, but
which pair maximizes the profit function? This is a daunting task as there
are infinitely many possible points (unless we only consider integer solutions;
more on this later).

Our aim is to maximize P (x1, x2) = 60x1 + 90x2 so let us consider this
function. If we fix a value for the profit, call it K, we then have a linear
equation in two variables. In particular, if we solve for x2 we have

x2 = −2

3
x1 +

K

90
. (6.10)

Notice that as K increases, this line moves further away from the origin
(see Figure 6.2).

We wish to increase K as much as possible, but recall there are restric-
tions. Specifically, the line representing the profit must intersect the feasible
region. So to maximize profit but also satisfy the constraints, we move the
line as far away from the origin as possible but still have at least one point
on the line in the feasible region. By this reasoning, we may conclude that an
optimal solution to a linear programming problem occurs at a corner point
(as mentioned in Section 4.1, a corner point of feasible regions is often called
a vertex of the feasible region). ■

90 Linear Programming

FIGURE 6.2
Graphs of the objective function for Lincoln Outdoors.

Though we have not formally proved2 it, we have

Theorem 6.1.2 (The Fundamental Theorem of Linear Programming3). If
the optimal value of the objective function in a linear programming problem
exists, then that value (known as the optimal solution) must occur at one or
more of the corner points of the feasible region.

Also from our exploration we have

Remark 6.1.3. The possible classifications of the solutions to Linear Pro-
gramming problems are:

• If the feasible region of a linear programming problem is bounded, then
there exists a maximum and a minimum value for the objective function.

• If the feasible region of a linear programming problem is unbounded and
if the coefficients of the objective function are positive4, then there exists
a minimum value for the objective function, but there does not exist a
maximum value for this function. (An analogous exists for a feasible region
not bounded below and the associated min and max... but these are seldom
encountered in applications.)

2Formal proofs of the theorems in this section will be offered in Chapter 17.
3The formal statement of this theorem is given in Theorem 17.2.2.
4Scenarios with negative coefficients are vary rare in applications.

A Geometric Approach to Linear Programming in Two Dimensions 91

• If the feasible region is empty, then there does not exist a maximum or a
minimum value for the objective function.

Given the Fundamental Theorem of Linear Programming, we may now
answer the question we considered in Example 6.1.1. We accomplish this by
evaluating the objective function at each corner point of the feasible region
and the work is shown in Table 6.2. We see that profit is maximized at $2160
which occurs when either 24 Cabin Model and 8 Frontier Model bags are made
or when 36 Cabin Model and no Frontier Model bags are produced. This leads
to

TABLE 6.2
P (x1, x2) Evaluated at Corner Points

Corner Point (x1, x2) P (x1, x2)

(0, 0) 0
(0, 20) 1800
(24, 8) 2160
(36, 0) 2160

Remark 6.1.4. Note that it is possible that the optimal solution occurs at
more than one corner point. If this situation occurs, then any point of the line
segment joining the corner points is also an optimal solution.

The situation addressed in Remark 6.1.4 is what we have in the Lincoln
Outdoors example and hence we conclude that the objective function P =
60x1+90x2 subjected to the given constraints is maximized at all points on the
line segment connecting the points (24, 8) and (36, 0), that is the maximum of
$2160 occurs over {(t,− 2

3 t+24) | 24 ≤ t ≤ 36}. This solution set is represented
in Figure 6.2 where the objective function P intersects the constraint boundary
2x1 + 3x2 = 72.

Of course, in this situation, we will be concerned with integer solutions
and the multiple integer solutions for Lincoln Outdoors are (24, 8), (27, 6),
(30, 4), (33, 2), and (36, 0) which appear in Figure 6.3. In Chapter 8 we will
explore how to find integer solutions and in Chapter 7 we will show how to use
Excel to find other possible solutions. In the meantime, we can be aware that
multiple solutions exist not only from the corner point analysis but also by
the observation that the objective function P (x1, x2) = 60x1+90x2 is parallel
to the assembly constraint 2x1 + 3x2 ≤ 72 (as seen in Figure 6.2).

6.1.2 Summary

We may summarize our techniques as follows:

92 Linear Programming

FIGURE 6.3
The multiple integer solutions for Lincoln Outdoors.

1. Summarize the data in table form (see Table 6.1).

2. Form a mathematical model for the problem by

• introducing decision variables,
• stating the objective function,
• listing the problem constraints, and
• writing the nonnegative constraints.

3. Graph the feasible region.

4. Make a table listing the value of the objective function at each corner
point.

5. The optimal solutions will be the largest and smallest values of the points
in this table.

6.1.3 Keywords

• solution set
• bounded/unbounded
• corner point
• decision variables
• objective function
• problem constraints
• nonnegative constraints
• feasible region
• optimal solution

The Simplex Method: Max LP Problems with Constraints of the Form ≤ 93

6.2 The Simplex Method: Max LP Problems with
Constraints of the Form ≤

6.2.1 Introduction

We have thus far looked at a geometric means of solving a linear programming
problem. Our previous method works fine when we have two unknowns and are
thus working with a feasible region that is a subset of the real plane (in other
words, is a two-dimensional object). This will also work with three variables,
but the graphs of the feasible regions are much more complicated (they would
be three dimensional objects). Of course, things get terribly messy if we have
four or more unknowns (we could not draw their graphs). As such we must
develop another means of tackling linear programming problems.

The technique introduce in this section is due to George Bernard Dantzig
(b. November 8, 1914, d. May 13, 2005). Dantzig developed it while on leave
from his Ph.D. at Berkeley working for the Army Air Force during World
War II. His algorithm was developed while serving and kept secret until it
was published in 1951.

The approach begins with examining what we did in Section 4.2 when we
considered a system of linear equalities of more than one variable. In partic-
ular, we were faced with solving the system 3x1 − 5x2 + x3 = 18

−2x1 + x2 − x3 = 5
x1 − x2 + 3x3 = −4

We considered isolating a variable, substituting, and working to reduce the
system to two equations in two unknowns, but that was too much work. In-
stead, we introduced an augmented matrix 3 −5 1 18

−2 1 −1 5
1 −1 3 −4


and used Gauss-Jordan Elimination (row operations) to get the matrix in
reduced form. It is this method that we adapt to solve linear programming
problems.

6.2.2 Slack Variables

The careful reader may have observed that in linear programming problems
the constraints are expressed as inequalities and not equalities. To modify the
problem from one we do not know how to solve into one we do know how to
solve, we introduce slack variables.

94 Linear Programming

Recall that in Example 6.1.1 we had the problem constraints that

1x1 + 2x2 ≤ 40, (6.11)

2x1 + 3x2 ≤ 72, and (6.12)

x1, x2 ≥ 0. (6.13)

We now introduce nonnegative slack variables s1 and s2 to “pick up the
slack”, i.e.

1x1 + 2x2 + s1 = 40, (6.14)

2x1 + 3x2 + s2 = 72, and (6.15)

x1, x2, s1, s2 ≥ 0. (6.16)

Unfortunately, we are now in a situation where we have four unknowns and
two equations. This means that we now have infinitely many solutions to the
system (we do know something about these solutions, though; namely that
we can fix two variables5 and express the other two variables as a function of
the fixed variables). We get around this little problem of an infinite number
of solutions by introducing basic and nonbasic variables.

Definition 6.2.1 (Basic and Nonbasic Variables).
Basic variables are chosen arbitrarily but with the restriction that there are
exactly the same number of basic variables as there are constraint equations
(we will see in Highlight 6.2.2 that there is a clever way to choose which
variables are basic). We then say that the remaining variables are nonbasic
variables.

We may now present the idea of a basic solution. We put the nonbasic
variables equal to 0 and then the solution of the resulting system of linear
equations is called a basic solution . A basic solution is said to be a basic
feasible solution if it lies within the feasible region of the problem (i.e.
satisfies all constraints).

Let us revisit Example 6.1.1 with the inclusion of the slack variables. We
then have the linear programming problem:

Maximize: P (x1, x2) = 60x1 + 90x2 (6.17)

Subject to: x1 + 2x2 + s1 = 40 (6.18)

2x1 + 3x2 + s2 = 72 (6.19)

x1, x2, s1, s2 ≥ 0. (6.20)

With reference to our original linear programming problem, we may refer to
this as the modified linear programming problem .

5In this statement we are assuming the constraints are linearly independent, which is
almost always the case in applications.

The Simplex Method: Max LP Problems with Constraints of the Form ≤ 95

6.2.3 The Method

We begin by writing the model as an augmented matrix with the objective
function as the last line:

x1 x2 s1 s2 P
1 2 1 0 0 40
2 3 0 1 0 72

−60 −90 0 0 1 0

 (6.21)

where the last line refers to rewriting the objective function as −60x1 +
−90x2 + P = 0.6 Recall from Definition 6.2.1 that there are to be as many
basic variables as there are equations. Hence in the example we are to have
three basic variables which leaves two to be nonbasic variables. By definition
these may be chosen arbitrarily, but some careful thought will make the tech-
nique more friendly to use. Note specifically the last three columns of 6.21;
they are the vectors [1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T . Realizing this matrix has
rank 3 we see that our choice of vectors will nicely serve as a basis for the
column space of the matrix. For this reason we choose these vectors to be our
three basic variables (and this is, in fact, why they are called basic). Hence the
decision variables x1 and x2 are left to be nonbasic variables. By convention,
these are set equal to 0 which means row 1 of our augmented matrix tells us
0 + 0 + s1 + 0 + 0 = 40, i.e. s1 = 40. Likewise the second row gives s2 = 72
and the last row P = 0.

We now rewrite 6.21 to reflect this:
(basic) x1 x2 s1 s2 P
(s1) 1 2 1 0 0 40
(s2) 2 3 0 1 0 72

(P) −60 −90 0 0 1 0

 (6.22)

This form of the matrix representing our linear programming problem is called
a tableau .

Highlight 6.2.2 (Selecting Basic Variables). The variables represented by
columns with exactly one nonzero entry (always a 1) are selected to be the
basic variables.

Note in 6.22 we have {s1, s2, P} as basic variables and {x1, x2} as nonbasic,
hence this corresponds to the solution x1 = 0, x2 = 0, s1 = 40, s2 = 72, P = 0

6Note that others choose to put the objective function in the first row of their matrix
representing the Linear Programming problem. Also, instead of −60x1 + −90x2 + P = 0
some choose to write 60x1+90x2−P = 0, thus their row representing the objective function
will have positive coefficients and their method is the corresponding adapted version of what
follows. Hence other explanations of the Simplex Method may appear different than what
we are doing, but really are the same procedure just written differently. This subject is a
relatively young one extending over multiple disciplines and notation and procedures are
not yet standardized.

96 Linear Programming

or, specifically, x1 = 0, x2 = 0, P = 0. Though this does not optimize P ,
it does satisfy the constraints and is therefore feasible. Hence we have that
(0, 0, 40, 72, 0) is a basic feasible solution and we now refer to 6.22 as the
initial Simplex tableau .

Definition 6.2.3 (Initial or Canonical Simplex Tableau). If the augmented
matrix representing the modified linear programming problem has a solution
that is feasible, it is called the initial or canonical Simplex tableau.

This is all very well and good, but our aim is to maximize profit. Where
to go next? Well, since the Frontiersman model produces the most per-unit
profit, it seems reasonable that letting x2 be as large as possible will lead to
maximizing the profit. x2 corresponds to the second column and notice that
this column has the largest negative entry in last row (the row corresponding
to the objective function). We will choose to work with this column and refer
to it as the pivot column .

Highlight 6.2.4 (Selecting the Pivot Column). To select the pivot column,
choose the column with the largest negative entry in the bottom row. If there
is a tie, choose either column. If there are no negative entries, we are
done and an optimal solution has been found.

Some reflection will reveal how we know in Highlight 6.2.4 that if a pivot
column cannot be selected then the optimal value as been obtained. No deci-
sion variable having a negative coefficient in the final row of the corresponding
Simplex tableau means that there is no decision variable that can be increased
and result in a larger objective function. Thus no changes in any decision vari-
able (unless we leave the feasible region) will lead to a more optimal value of
the objective function. Hence the maximum over the feasible region has been
obtained and the process terminates.

Once a pivot column has been selected, what is to be done next? Since
we are focusing on making as many Frontiersman models as possible (this
choice over the Cabin model increases the profit the most), let us recall the
constraints. In particular, we know that the cutting department needs 2 labor-
hours to cut each sleeping bag and that the assembly department needs 3
labor-hours to assemble a sleeping bag. The cutting department only has
40 labor-hours available which means they can cut for at most 20 sleeping
bags. The assembly department has only 72 labor-hours available, so they
can assemble at most 24 sleeping bags. Hence we have the restriction that we
can make at most 20 Frontiersman models of the sleeping bag in a single day.
Hence we choose the first row as the pivot row . Notice that these restrictions
correspond to dividing the each value in the last column by the corresponding
value in the pivot column and then selecting the smallest positive ratio.

Highlight 6.2.5 (Selecting the Pivot Row). To select the pivot row, choose
the row with the smallest positive ratio of the entry in the last column divided
by the corresponding entry in the pivot column. If there is a tie, choose either

The Simplex Method: Max LP Problems with Constraints of the Form ≤ 97

row. If there are no positive entries in the pivot column above the
last row, the linear program has no optimal solution and we are
done.

We refer to the element of the tableau that is in the pivot row and the pivot
column as the pivot element . In our example, the pivot element is 2. Our
job is to now perform legal row operations to make the pivot element 1 and
every other entry in the pivot column 0. These row operations are commonly
called pivot operations.

Highlight 6.2.6 (Pivot Operations). There are two:

• Multiply the pivot row by the reciprocal of the pivot element. This trans-
forms the pivot element into a 1. Symbolically, if k is the pivot element
and Rt is the pivot row: 1

kRt → Rt.

• Add multiples of the pivot row to all other rows in the tableau in order to
annihilate (transform to 0) all other entries in the pivot column. Symbol-
ically, something like aRs +Rt → Rt.

Again, some thought sheds light on why not being able to select a pivot
row in Highlight 6.2.5 leads to a linear programming problem not having a
max. If no entry in the selected pivot column has a positive coefficient, then
increasing the corresponding decision variable will lead to a decrease in the
left-hand side of the constraint that the row represents. As the constraint
is of the form ≤, the decision variable can be made arbitrarily large – thus
increasing the objective function without end – and still satisfy the constraint.
Hence when a pivot row cannot be selected, it is the case that the feasible
region is unbounded.

Back to the example, we have decided that the second column (the column
representing the variable x2) is the pivot column and the first row (currently
representing the basic variable s1) is the pivot row. Hence we should begin
our row operations by doing

1

2
R1 → R1

which gives us 
(basic) x1 x2 s1 s2 P
(s1)

1
2 1 1

2 0 0 20
(s2) 2 3 0 1 0 72

(P) −60 −90 0 0 1 0

 .

Next, we do the row operations

−3R1 +R2 → R2 and 90R1 +R3 → R3

which gives 
(basic) x1 x2 s1 s2 P
(x2)

1
2 1 1

2 0 0 20
(s2)

1
2 0 − 3

2 1 0 12

(P) −15 0 45 0 1 1800

 .

98 Linear Programming

Observe that we now have that the basic variables are given by the set
{x2, s2, P} and the non-basic variables are {x1, s1}. It is also worthwhile to
point out that we currently have x1 = 0 (since it is currently a non-basic
variable) and x2 = 20. This corresponds to a corner point in the graph of the
feasible solution and, in fact, the Simplex Method after one iteration
has moved us from the origin to the point (0, 20) where P has increased
from $0 to $1800.

Since we still have a negative entry in the bottom row, we repeat the
process. Column 1 will now be the pivot column. As well, 20/ 1

2 = 40 and
12/ 1

2 = 24, hence we choose the second row as the pivot row. Since the pivot
element is 1

2 we initially perform the row operation

2R2 → R2

to get 
(basic) x1 x2 s1 s2 P
(x2)

1
2 1 1

2 0 0 20
(s2) 1 0 −3 2 0 24
(P) −15 0 45 0 1 1800

 .

then the row operations

−1

2
R2 +R1 → R1 and 15R2 +R3 → R3

which gives us 
(basic) x1 x2 s1 s2 P
(x2) 0 1 2 −1 0 8
(x1) 1 0 −3 2 0 24

(P) 0 0 0 30 1 2160

 .

Again, notice that x1 has now entered as a basic variable (selected column 1
as the pivot column) while s2 has excited the set of basic variables (selected
row 2 as the pivot row). As well, since there are no more negative entries
in the bottom row, the Simplex Method terminates and we have found the
optimal solution; in particular that producing 24 Weekend model tents (which
is what the variable x1 represents) and producing 8 Backcountry model tents
(represented by x2) produces a maximum daily profit of $2160. Specifically,
the Simplex Method during the second iteration moved us from the
(0, 20) to (24, 8) and P has increased from $1800 to $2160 and any other move
will not increase P .

It is worthwhile to emphasize a very important property of the Simplex
Method.

Discussion 6.2.7. The Simplex method is designed in such a way that as
long as the method begins at a feasible solution (hence the importance of the
initial simplex tableau over just a tableau), are bounded, and we do not have

The Simplex Method: Max LP Problems with Constraints of the Form ≤ 99

degeneracy (see Section 6.5), the algorithm will efficiently move from corner
point to corner point until it terminates at the optimal value. This is important
because it guarantees

1. the process always terminates and
2. the process always produces a feasible solution.

6.2.4 Summary

To summarize the Simplex Method,

1. Introduce slack variables into the mathematical model and write the initial
tableau.

2. Are there any negative entries in the bottom row?

• Yes – go to step 3.

• No – the optimal solution has been found.

3. Select the pivot column.
4. Are there any positive elements above the last row (above the solid line)?

• Yes – go to step 5.

• No – no optimal solution exists (the feassible region is unbounded).

5. Select the pivot row and thus the pivot element. Perform the appropriate
pivot operations then return to step 2.

Example 6.1.1 summarized:

Maximize: P (x1, x2) = 60x1 + 90x2

Subject to: x1+2x2 + s1 = 40

2x1+3x2 + s2 = 72

x1,x2, s1, s2 ≥ 0.

Notes i, ii.︷ ︸︸ ︷
(basic) x1 x2 s1 s2 P

(s1) 1 2 1 0 0 40
(s2) 2 3 0 1 0 72
(P) −60 −90 0 0 1 0


1
2R1→R1−−−−−−→


x1 x2 s1 s2 P

(s1)
1
2 1 1

2 0 0 20
(s2) 2 3 0 1 0 72
(P) −60 −90 0 0 1 0



100 Linear Programming

−3R1+R2→R2−−−−−−−−−−→
90R1+R3→R3

Note iii.︷ ︸︸ ︷
x1 x2 s1 s2 P

(x2)
1
2 1 1

2 0 0 20

(s2) 0.5 0 − 3
2 1 0 12

(P) −15 0 45 0 1 1800


2R2→R2−−−−−−→


x1 x2 s1 s2 P

(x2)
1
2 1 1

2 0 0 20

(s2) 1 0 −3 2 0 24

(P) −15 0 45 0 1 1800



− 1
2R2+R1→R1−−−−−−−−−−→

15R2+R3→R3

Note iv.︷ ︸︸ ︷
x1 x2 s1 s2 P

(x2) 0 1 1 − 3
2 0 8

(x1) 1 0 −3 2 0 24

(P) 0 0 0 30 1 2160

 .

Notes:
i. As this matrix’s solution set x1 = 0, x2 = 0, s1 = 40, s2 = 72 satisfies all
constraints, the solution set is in the feasible region and thus we have an initial
Simplex tableau.
ii. Since | − 90| > | − 60| and 0 < 40

2 < 72
3 , the 2 is the pivot element.

iii. Since the first column is the only column with a negative entry and since
0 < 12/ 1

2 < 20/ 1
2 , the circled 1

2 is the pivot element.
iv. As there are no negative entries in the bottom row, the process terminates
and we have an optimal value.

6.2.5 Keywords

• slack variables
• basic variables
• nonbasic variables
• basic solution
• basic feasible solution
• pivot row
• pivot column
• pivot element
• pivot operation
• Simplex Method
• Simplex Tableau
• Initial Simplex Tablea

The Dual: Minimization with Problem Constraints of the Form ≥ 101

6.3 The Dual: Minimization with Problem Constraints
of the Form ≥

6.3.1 How It Works

Instead of maximizing a particular objective function, let us are now consider
a situation where we want to minimize an objective function, e.g. minimizing
costs. These problems are of the form:

Minimize: C(y1, y2) = 40y1 + 72y2 (6.23)

Subject to: y1 + 2y2 ≥ 60 (6.24)

2y1 + 3y2 ≥ 90 (6.25)

y1, y2 ≥ 0. (6.26)

As we will see in Section 6.3.2, each problem of this form can be associated
with a corresponding maximization problem which we refer to as the dual
problem .

Our first step in forming the dual problem will be to form a matrix from
the problem constraints and the objective function. The appropriate matrix
for our example is

A =

 1 2 60
2 3 90
40 72 1

 .

Please note thatA is not the matrix associated with the initial simplex tableau

as in Example 6.1.1. We now consider AT , the transpose of matrix A. Hence,
for our example:

AT =

 1 2 40
2 3 72
60 90 1

 .

Given AT we may now form the dual problem, namely we now have a maxi-
mization problem with constraints of the form ≤. In particular, we have the
dual problem:

Maximize: P (x1, x2) = 60x1 + 90x2 (6.27)

Subject to: x1 + 2x2 ≤ 40 (6.28)

2x1 + 3x2 ≤ 72 (6.29)

x1, x2 ≥ 0. (6.30)

Look familiar? This is the example we have considered previously. This time,
though, let us name our slack variables y1 and y2. Our initial Simplex tableau

102 Linear Programming

is 
x1 x2 y1 y2 P
1 2 1 0 0 40
2 3 0 1 0 72
−60 −90 0 0 1 0

 . (6.31)

and the Simplex method gives us as the final tableau:
x1 x2 y1 y2 P
0 1 1 − 3

2 0 8
1 0 −3 2 0 24
0 0 0 30 1 2160

 . (6.32)

We note that the bottom row of the simplex tableau gives us the solution
to our minimization problem, namely that y1 = 0 and y2 = 30 minimizes
C(y1, y2) = 60y1 + 90y2 under the stated constraints. I.e.

Highlight 6.3.1. An optimal solution to a minimization problem is obtained
from the bottom row of the final simplex tableau for the dual maximization
problem.

One word of caution, though.

Warning!! 6.3.2. Never multiply the inequality representing a problem con-
straint in a maximization problem by a number if that maximization problem
is being used to solve a corresponding minimization problem.

Example 6.3.3.

6.3.2 Why It Works

The type of problems considered in Section 6.2 were problems of the form

maximize P (x) = cTx

subject to Ax ≤ b (6.33)

x ≥ 0.

Here we have abbreviated the statement of the problem by using notation from
Linear Algebra. By writing vectors together, e.g. uv, we mean to multiply the
vectors using the dot product. By the inequality of (6.33) we mean that for
each component of the resulting vectors we have ai1x1 + · · · + ainxn ≤ bi.
Linear programming problems the form (6.33) (“maximize” together with
“Ax ≤ b”) are said to be of first primal form , which was the class of
problems we studied in Section 6.2. The dual of the first primal form is

minimize C(y) = bTy

subject to ATy ≥ c (6.34)

y ≥ 0

The Big M Method: Max/Min LP Problems with Varying Constraints 103

where this class of problems is characterized by “minimize” together with
“Ay ≤ c”.

These two forms are joined by the following theorem:

Theorem 6.3.4 (The Fundamental Principle of Duality). A minimization
problem has a solution if and only if the corresponding dual maximization
problem has a solution.

More precisely

Theorem 6.3.5 (Weak Duality). If x satisfies the constraints of a linear
programming problem in first primal form and if y satisfies the constraints of
the corresponding dual, then

cTx ≤ bTy. (6.35)

Proof. Since we have a problem of first primal form, we know that x ≥ 0 and
Ax ≤ b. Likewise, by the dual y ≥ 0 and ATy ≥ c are satisfied. Hence

cTx ≤ (ATy)Tx = yTAx ≤ yTb = bTy (6.36)

where the last equality holds because both expressions are dot products.

Showing that max{cTx} and min{bTy} exist and are equal in this case
is known as Strong Duality and this proof is left as an exercise.

The significance of 6.36 in Theorem 6.3.2 is clear once we realize we are
trying to maximize the LHS and minimize the RHS. Thus we have a solution
to each problem exactly when cTx = bTy; in other words if x is a solution to
the first primal LP problem, then y is a solution to its dual and vice versa.

6.3.3 Keywords

• dual problem

• the Fundamental Theorem of Duality

6.4 The Big M Method: Max/Min LP Problems with
Varying Constraints

6.4.1 Maximization Problems with the Big M Method

We motivate a technique for solving maximization problems with mixed con-
straints by considering the following example:

104 Linear Programming

Maximize: P (x1, x2) = 2x1 + x2 (6.37)

Subject to: x1 + x2 ≤ 10 (6.38)

−x1 + x2 ≥ 2 (6.39)

x1, x2 ≥ 0. (6.40)

As before, since the first inequality involves a ≤, we introduce a slack
variable s1:

x1 + x2 + s1 = 10. (6.41)

Note that this slack variable is necessarily nonnegative.
We need the second inequality to be an equality as well, so we introduce

the notion of a surplus variable, s2 (remember, the left hand side exceeds
the 2, so the s2 makes up for the difference). It would be natural to make
this variable nonpositive, but, to be consistent with the other variables, let us
require the surplus variable s2 to as well be nonnegative. Hence the second
inequality is rewritten

−x1 + x2 − s2 = 2. (6.42)

Hence the modified problem is:

Maximize: P (x1, x2) = 2x1 + x2 (6.43)

Subject to: x1 + x2 + s1 = 10 (6.44)

−x1 + x2 − s2 = 2 (6.45)

x1, x2, s1, s2 ≥ 0. (6.46)

and the preliminary tableau for the Simplex Method is
(basic) x1 x2 s1 s2 P
(s1) 1 1 1 0 0 10
(s2) −1 1 0 −1 0 2

(P) −2 −1 0 0 1 0

 . (6.47)

which has as its basic solution

x1 = 0, x2 = 0, s1 = 10, s2 = −2. (6.48)

Unfortunately, this is not feasible (s2 fails to satisfy the nonnegativity con-
straint). Hence this cannot be the initial Simplex tableau7 and some work
most be done to modify the problem so that we have an initial feasible basic
solution (if the basic solution is not feasible, we eventually reach a step in the

7Some literature refers to an initial tableau which gives a basic feasible solution as a
canonical Simplex tableau.

The Big M Method: Max/Min LP Problems with Varying Constraints 105

process where we do not yet have the optimal value for P , but we are unable
to select a next pivot element – try it!).

We thus introduce an artificial variable for each surplus variable. These
artificial variables are included in the constraint equations involving the re-
spective surplus variable with the purpose of the surplus variable can now be
nonnegative and the artificial variable will pick up the slack:

−x1 + x2 − s2 + a1 = 2. (6.49)

The introduction of the artificial variable is very clever, but it is “artificial”,
so we do not want it to be part of an optimal solution. In particular, we want
the artificial variable to be 0 in the solution. As such, we introduce a very
large penalty into the objective function if the, artificial variable is anything
other than 0 namely:

P (x1, x2) = 2x1 + x2 −Ma1 (6.50)

where M is an arbitrary number (hence the name “Big M” Method).
Hence the modified problem becomes:

Maximize: P (x1, x2) = 2x1 + x2 −Ma1 (6.51)

Subject to: x1 + x2 + s1 = 10 (6.52)

−x1 + x2 − s2 + a1 = 2 (6.53)

x1, x2, s1, s2, a1 ≥ 0. (6.54)

and the tableau is
(basic) x1 x2 s1 s2 a1 P
(s1) 1 1 1 0 0 0 10
(s2) −1 1 0 −1 1 0 2

(P) −2 −1 0 0 M 1 0

 (6.55)

which has as its basic solution

x1 = 0, x2 = 0, s1 = 10, s2 = −2, a1 = 0. (6.56)

Note we still have the same problem... a nonfeasible basic solution and
therefore the tableau in 6.55 is not the initial Simplex tableau. To remedy
this, let us make a1 a basic variable:
The row operation (−M)R2 +R3 → R3 gives us

(basic) x1 x2 s1 s2 a1 P
(s1) 1 1 1 0 0 0 10
(a1) −1 1 0 −1 1 0 2

(P) M − 2 −M − 1 0 M 0 1 −2M

 . (6.57)

which has as its basic solution

x1 = 0, x2 = 0, s1 = 10, s2 = 0, a1 = 2, (6.58)

which is feasible.

106 Linear Programming

Now we are able to employ the Simplex method where M is some large
fixed positive number. The Simplex Method yields:

(basic) x1 x2 s1 s2 a1 P
(x1) 1 0 1

2
1
2 − 1

2 0 4
(x2) 0 1 1

2 − 1
2

1
2 0 6

(P) 0 0 3
2

1
2 M − 1

2 1 14

 . (6.59)

which has as its basic solution

x1 = 4, x2 = 6, s1 = 0, s2 = 0, a1 = 0, P = 14, (6.60)

which is feasible.
To summarize:

The Big M Method

Set-up:

1. Multiply any constraints that have negative constants on the right by −1
(this is so that the notions of slack and surplus variables will be consistent).

2. Introduce a slack variable for every constraint that has a ≤.
3. Introduce a surplus variable and an artificial variable for every constraint

that has a ≥.
4. For every artificial variable ai that has been introduced, add −Mai to the

objective function.

Solution:

1. Form the preliminary tableau to use the Simplex Method on the modified
problem.

2. Do the necessary row operations to make each artificial variable a basic
variable (i.e. make sure each column that represents an artificial variable
has exactly 1 nonzero entry).

3. Apply the Simplex method to obtain an optimal solution to the modified
problem.

4. a) If the modified problem has no optimal solution, then the original prob-
lem has no solution.
b) If all artificial variables are 0, an optimal solution to the original prob-
lem has been found.
c) If any artificial variable is nonzero, then the original problem has no
optimal solution.

6.4.2 Minimization Problems with the Big M Method

In Exercise 2.2, you showed that for a real-valued function f(x), f(x∗) is
a maximum of f if and only if −f(x∗) is a minimum of −f . In other words,

The Big M Method: Max/Min LP Problems with Varying Constraints 107

minimizing f(x) is the same as maximizing−f(x); they can be different values,
but the location of maxf(x) and minf(x) are the same: x∗. Therefore if one is
to minimize C(x1, x2, ..., xn), merely apply the above procedures to maximize
−C(x1, x2, ..., xn).

Highlight 6.4.1. Note that when using the Big M Method to solve a mini-
mization problem, the penalty +Ma1 (add since we are minimizing) is to be
introduced before negating the objective function C.

Example 6.4.2.

Minimize: C = 5x1 + 3x2 (6.61)

Subject to: 3x1 + 4x2 ≥ 12 (6.62)

2x1 + 5x2 ≤ 20 (6.63)

x1, x2 ≥ 0. (6.64)

Thus the modified problem is

Minimize: C = 5x1 + 3x2 +Ma1 (6.65)

Subject to: 3x1 + 4x2 − s1 + a1 = 12 (6.66)

2x1 + 5x2 + s2 = 20 (6.67)

x1, x2 ≥ 0 (6.68)

with surplus variable s1, slack variable s2, and artificial variable a1. Note that
we have added the penalty Ma1 because this is a minimization problem and
we want a1 having any value above 0 to take us away from the minimum.

As the Big M Method is designed for maximization problems, we adapt the
given problem in the following way:

Maximize: P = −C = −5x1 − 3x2 −Ma1 (6.69)

Subject to: 3x1 + 4x2 − s1 + a1 = 12 (6.70)

2x1 + 5x2 + s2 = 20 (6.71)

x1, x2, s1, s2 ≥ 0. (6.72)

The corresponding tableau is
(basic) x1 x2 s1 s2 a1 P
(s1) 3 4 −1 0 1 0 12
(s2) 2 5 0 1 0 0 20

(P) 5 3 0 0 M 1 0

 . (6.73)

which has x1 = x2 = a1 = 0 and s1 = −12, s2 = 20 as its basic solution.
Note this is not feasible, so we perform the row operation −MR1+R3 → R3

to obtain
(basic) x1 x2 s1 s2 a1 P
(a1) 3 4 −1 0 1 0 12
(s2) 2 5 0 1 0 0 20

(P) 5− 3M 3− 4M M 0 0 1 −12M

 . (6.74)

108 Linear Programming

TABLE 6.3
Summary of Applying the Simplex Method to LP Problems

LP Constraints RHS Constants Coeff. of P Solution

Max ≤ nonnegative any Simplex w/ slack
variables

Min ≥ any nonnegative the dual
Max ≥ or mixed nonnegative any Big M

Min ≤ or mixed nonnegative any Big M max nega-
tive obj. func.

which has x1 = x2 = s1 = 0 and a1 = 12, s2 = 20 as its basic solution. Since
this is feasible, we may now proceed with the Simplex Method.


(basic) x1 x2 s1 s2 a1 P
(a1) 3 4 −1 0 1 0 12
(s2) 2 5 0 1 0 0 20

(P) 5− 3M 3− 4M M 0 0 1 −12M

 (6.75)

Using row operations 1
4R1 → R1, − 5

4R1+R2 → R2, and
4M−3

4 R1+R3 →
R3, we obtain:


x1 x2 s1 s2 a1 P

(x2)
3
4 1 − 1

4 0 1
4 0 3

(s2) − 7
4 0 5

4 1 − 5
4 0 5

(P) 11
4 0 3

4 0 4M−3
4 1 −9

 (6.76)

As there are no negative entries in the columns involving the variables, the
process terminates and we see that max P = −C− 9 therefore min C = 9 and
this occurs at x1 = 0, x2 = 3.

6.5 Degeneracy and Cycling in the Simplex Method

We have seen that the notion of a basic feasible solution is fundamental to
the Simplex Method. The name basic comes from the fact that the column
vectors representing the basic variables form a basis for the column space ofthe

Exercises 109

linear programming problem’s corresponding matrix. The Simplex Method
can fail when at some iteration in the process a basic variable is 0. The pivot
that introduces the basic variable into the feasible solution is referred to as a
degenerate pivot and we refer to the method in this case as being degenerate.

Degenerate pivots can happen and not be a death blow to the algorithm
accomplishing its task. Unfortunately, there are times when a degenerate pivot
leads to further application of the algorithm causing old decision variables
to leave the set of basic variables and new ones enter, but the value of the
objective function does not change. In this situation, it is possible for the
Simplex Method to cycle through these sets in some maddening infinite loop
and the process thus not terminate. Such a situation is referred to as cycling
and causes a problem only in that the algorithm will not stop. Including
an anti-cycling rule such as Bland’s Smallest Subscript Rule (or just Bland’s
Rule) [3] when employing the Simplex Method guarantees that the algorithm
will terminate.

6.6 Exercises

For Exercises 6.1 through 6.5, do each of the following:

I. Solve the following linear programming problems by graphing the feasi-
ble region then evaluating the objective function at each corner point.
“Solve” means state the optimal value of the objective function and all
points in the feasible region at which this optimal value occurs.

II. Solve each problem using the Simplex Method, it’s dual, or the Big M
Method. Your work should contain a clear statement of the model after
the introduction of slack, surplus, and artificial variables. You may use
a calculator or computer to do the row operations, but write down the
obtained simplex tableau after each iteration of the method. At each
iteration identify the pivot element.

III. Check your work using a software package of your choice (Solver, Matlab,
etc.). Print and submit your answer screen and please make clear what
software you have used.

Exercise 6.1.

Minimize P (x, y) = 5x+ 2y

Subject to x+ y ≥ 2

2x+ y ≥ 4

x, y ≥ 0

110 Linear Programming

For this question only (i.e. Exercise 6.1), when the Simplex method (part
II above), at each iteration state which variables are basic and which are non-
basic. Also, at each iteration state the value of the objective function.

Exercise 6.2.

Maximize P (x, y) = 5x+ 2y

Subject to x+ y ≥ 2

2x+ y ≥ 4

x, y ≥ 0

Exercise 6.3.

Maximize P (x, y) = 20x+ 10y

Subject to x+ y ≥ 2

x+ y ≤ 8

2x+ y ≤ 10

x, y ≥ 0

Exercise 6.4.

Maximize P (x, y) = 20x+ 10y

Subject to 2x+ 3y ≥ 30

2x+ y ≤ 26

−2x+ 5y ≤ 34

x, y ≥ 0

Exercise 6.5.

Minimize P (x, y) = 20x+ 10y

Subject to 2x+ 3y ≥ 30

2x+ y ≤ 26

−2x+ 5y ≤ 34

x, y ≥ 0

Exercise 6.6. In this problem, there is a tie for the choice of the first pivot
column. When you do your work using the simplex method use the method
twice to solve the problem two different ways; first by choosing column 1 as the
first pivot column and then for your second solution effort, solve by choosing
column 2 as the first pivot column. You may use a computer or calculator to
perform the Simplex Method, but do write down the results of each iteration.

Exercises 111

Maximize P (x, y) = x+ y

Subject to 2x+ y ≤ 16

x ≤ 6

y ≤ 10

x, y ≥ 0

Exercise 6.7. This problem has multiple parts.

1. Solve the following by using the dual of the Simplex Method. Your work
should contain each the details of each iteration.

Minimize C(x1, x2, x3) = 40x1 + 12x2 + 40x3

Subject to 2x1 + x2 + 5x3 ≥ 20

4x1 + x2 + x3 ≥ 30

x1, x2, x3 ≥ 0

2. The dual problem has as its first constraint

2y1 + 4y2 ≤ 40. (6.77)

Replace this constraint by its simplified version

y1 + 2y2 ≤ 20 (6.78)

then proceed with the Simplex Method.

3. Compare your answers from the first two parts. Why are they different?

7

Sensitivity Analysis

7.1 Motivation

Recall Lincoln Outdoors manufacturing sleeping bags from Example 6.1.1 with
the details of the situation summarized in Table 7.1.

We sought to help Lincoln Outdoors by determining what manufacturing
levels maximized profit and modeled the situation with the linear program-
ming problem:

Maximize: P (x1, x2) = 60x1 + 90x2 (7.1)

Subject to: x1 + 2x2 = 40 (7.2)

2x1 + 3x2 = 72 (7.3)

x1, x2 ≥ 0. (7.4)

We found that any of (24, 8), (27, 6), (30, 4), (33, 2), or (36, 0) would give
a maximum profit of $2,160.

In many real life situations, the vales used for the coefficients of the con-
straints and the objective functions are often (hopefully) good estimates of
what is taking place (or even a good prediction of what will take place) and,
as such, management may be skeptical of the analysis. Also, situations may
change in that the cost of materials might fluctuate as may the efficiency of
our machines or labor force. For example, it may be that due to a change in
the cost of materials the profit realized on the production and sale of a Cabin
Model sleeping bag is $58.77 instead of $60 or by an employee’s clever sug-
gestion assembling a Frontier Model sleeping bag only now takes 2.67 hours
instead of 3. Sensitivity analysis can help convince someone that the model
is reliable as well as give insight into the how a solution may change if any of
the contributing factors vary slightly.

7.2 An Excel Example

We will illustrate the ideas of this chapter by considering the Lincoln Outdoors
problem. We can enter it in an Excel worksheet as in Figure 7.1.

DOI: 10.1201/9780367425517-7 112

https://doi.org/10.1201/9780367425517-7

An Excel Example 113

TABLE 7.1
Manufacturing Data for Lincoln Outdoors in Example 6.1.1

Labor-Hours Cabin Model Frontier Model Max Hours per Day

Cutting Dept. 1 2 40
Assembly Dept. 2 3 72

Profit per Bag $60 $90

FIGURE 7.1
The Lincoln Outdoors problem in Excel.

FIGURE 7.2
An Excel solution for Lincoln Outdoors.

Using Excel’s add-in Solver and selecting “Simplex LP” as the Solving
Method option gives the result shown in Figure 7.2.

Before accessing the result, Solver permits accessing some optional reports
as in Figure 7.3. As we are exploring sensitivity analysis, we are going to want
Solver to show us an Answer Report, Sensitivity Report, and Limits Report
and we get these options by clicking on the appropriate words in the upper
right of the window.

After highlighting the Answer, Sensitivity, and Limits reports, select the
“OK” tab and Solver returns to the workbook displaying the solution with
tabs at the bottom of the sheet. Sheet 1 (or whatever name you change it to)
displays Figure 7.4.

114 Sensitivity Analysis

FIGURE 7.3
Options in Excel’s solution for Lincoln Outdoors.

FIGURE 7.4
Report options displayed in Excel’s solution for Lincoln Outdoors.

7.2.1 Solver’s Answer Report

Let us select the Answer Report tab. Excel displays what is shown in Figure
7.5. The Objective Cell (Max) part of the report tells us that our Profit cell
(C5) started with a value of 0 (the default value for a blank cell) and reached
its max at $2,160. When using the Simplex LP solution option, the starting
value should be at the origin as the technique is designed to start there, though
in practice any value should work as the search is very quick and (barring

An Excel Example 115

FIGURE 7.5
The answer report for Lincoln Outdoors.

irregularities that seldom occur in application) the process is guaranteed to
converge.

The next part of the report, Variable Cells, gives us the initial and solution
values of the decision variables as well as the additional information that
we found the solution over the real numbers (“Contin” = “Continuous” as
compared to an integer or binary solution).

Lastly the Constraints section reports the value of the constraints when
the solution is reached. For the situation when x = Cabin Models = 24 and
y = Frontier Models = 8, the Cutting constraint has a value of 40 while the
Assembly constraint has a value of 72; both of which are at their respective
limits hence the report that for each variable the Slack is 0 and therefore each
constraint is “Binding” meaning there is no room to move either constraint
any higher.

The previous report serves its purpose, but for the sake of this chapter
we want to focus on the reports in the second and third tabs, namely the
Sensitivity Report (Figure 7.6) and the Limits Report (Figure 7.8).

7.2.2 Solver’s Sensitivity Report

In the Sensitivity Report (Figure 7.6), the Variable Cells section refers to the
decision variables. The Final Value column displays the value of the decision
variables returned by Solver for yields the optimal solution. Recall that in
this example there are multiple solutions: (24, 8), (27, 6), (30, 4), (33, 2), and
(36, 0). Solver returns (24, 8) because it used the Simplex Method which begins

116 Sensitivity Analysis

FIGURE 7.6
The sensitivity report for Lincoln Outdoors.

at (0, 0), one iteration takes us to (0, 20) and the next iteration to (24, 8). As
no selection of a pivot column would improve the objective function’s value
(no negative values in the bottom row as per Highlight 6.2.4), the algorithm
terminates here. The Reduced Cost requires a little bit of work and we will
address that after we understand Shadow Prices. The Objective Coefficient is
(as the name states) the coefficient of the decision variable in the objective
function. The Allowable Increase and Allowable Decrease columns tell us how
much range we have for a change in the particular coefficient to not affect the
solution provided all other coefficients remain unchanged. For example,
in this situation, if we think of the objective function as being P (x1, x2) =
Ax1 + 90x2 then the stated global solution [the (24, 8); not the others!] will
remain the same as long as 45 ≤ A ≤ 60. Likewise, P (x1, x2) = 60x1 + Bx2

has also has the solution unchanged as long as 90 ≤ B ≤ 120.
You are encouraged to experiment with the ranges of the decision vari-

ables in a spreadsheet using Solver. Geometrically, Figure 7.7 shows the idea
behind these numbers: for instance, once A < 45, the furthest corner point
the objective function would intersect as it leaves the origin (as in Figure 6.2)
would be (0, 20). If the A goes above 60, the objective function becomes steep
enough that the last corner point it would intersect leaving the feasible region
would be (36, 0). Each of these situations is illustrated in Figure 7.7. Again, it
is important to restate that this range of values only holds if the other decision
variable’s constant – the 90 – remains unchanged.

In situations where other solutions of a Linear Programming problem exist,
just like in Lincoln Outdoors, Solver’s Sensitivity Report has another use.

Highlight 7.2.1 (Other LP Solutions in Solver). Apart from degenerate cases,
when using Solver to find the optimum in a Linear Programming problem, a
0 in either the Allowable Increase or Allowable Decrease in the Variable Cells
section of the Sensitivity Report signals that other solutions exists.

An Excel Example 117

FIGURE 7.7
Solution changes for different A in the objective function P = Ax1 + 90x2

with Lincoln Outdoors.

In this situation we can use Solver to attempt to find other solutions by
using Algorithm 7.2.1.

Algorithm 7.2.1 Finding Additional Non-Degenerate LP Solutions Using
Solver.
Input: Solved LP problem in Solver with decision variables x1, . . . , xn.
1: Add a constraint to the model that holds the objective function at the

optimal value.
2: for i = 1 to k do
3: if Allowable Decrease = 0 for xi then
4: run Solver to minimize xi

5: end if
6: if Allowable Increase = 0 then
7: run Solver to maximize xi

8: end if
9: end for

Output: Additional non-degenerate LP solutions via Solver (if they exist).

118 Sensitivity Analysis

FIGURE 7.8
The limits report for Lincoln Outdoors.

Note that in Algorithm 7.2.1, we minimize the decision variable if its Al-
lowable Decrease = 0 due to the fact that there is an Allowable Increase and a
move in that direction would not change the current optimal solution (hence
an “allowable” increase). Likewise, if the Allowable Increase = 0 we would not
want to minimize as there is a positive allowable decrease that would not
change the stated solution.

In the Lincoln Outdoors example, this would mean we add 2160 = 60x1 +
90x2 to the constraints. Then if we choose to work with the decision variable
representing the number of Cabin Models, x1, we would make the objective
function Max x1; or, if we rather choose to focus on the number of Frontier
Models, we would make the objective function Min x2. The models to explore
would then be

Maximize: f(x1, x2) = x1 (7.5)

Subject to: 60x1 + 90x2 = 2160 (7.6)

x1 + 2x2 = 40 (7.7)

2x1 + 3x2 = 72 (7.8)

x1, x2 ≥ 0 (7.9)

and

Minimize: f(x1, x2) = x2 (7.10)

Subject to: 60x1 + 90x2 = 2160 (7.11)

x1 + 2x2 = 40 (7.12)

2x1 + 3x2 = 72 (7.13)

x1, x2 ≥ 0. (7.14)

Next we turn to the Constraints section of the Sensitivity Report. The Final
Value is the value of the constraint when it is evaluated at the point given in

An Excel Example 119

the solution and the Constraint R.H. Side is the constant on the right of the
constraint. Note that in the Lincoln Outdoors example these columns agree
for both constraints. This is exactly because both constraints are binding and
there are no labor-hours available for either at the production level given in
the solution.

The Shadow Price returns the marginal value the problem constraints (usu-
ally resources). Specifically, this value is the amount that the objective func-
tion will change with a unit increase in the constant on the right hand side of
the constraint; a positive shadow price means an increase in the objective func-
tion’s optimal value where a negative shadow price means the optimal value
of the objective function would decrease. For example, the shadow price of the
assembly constraint in the example is 30; this means that if we make one more
labor-hour available in the assembly department, the objective function will
increase by $30 (note this is a theoretical return as 1 more assembly hour does
not return a full sleeping bag and we will only be selling an integer amount of
sleeping bags). The shadow price of 0 for the cutting constraint means a unit
increase in the labor-hours available for cutting will result in no change in the
optimal value of the objective function. The Allowable Increase and Allowable
Decrease columns that follow provide a range of the changes in the constraint’s
bound, i.e. the constant on the right hand side of the constraint, for which
these shadow prices hold. For example, in the Lincoln Outdoors solution any
amount of cutting room labor hours from 36 to 48 would still have a shadow
price (marginal value) of 0.

Now that we understand Shadow Price, we can address Reduced Cost. The
Reduced Cost of a variable is calculated by

Reduced Cost = coefficient of variable in objective function

− value per unit of resources used (7.15)

where the resources are valued at their shadow price.
For example, the reduced cost of the Cabin Model for Lincoln Outdoors is

(all values are per unit)

contribution to objective function− cutting hours · shadow price

− assembly hours · shadow price

= 60− 1 · 0− 2 · 30 = 0.

As well, the reduced cost of the Frontier Model is

90− 2 · 0− 3 · 30 = 0.

It is not a coincidence that both of these values are 0, as the only time
Reduced Cost of a decision variable is non-zero is if the variable is at either its
lower or upper bound of the feasible region. For example, based on the cutting
and assembly constraints we will only be able to produce between 0 and 36
Cabin Model sleeping bags. The solution x1 = 24 is easily within this range.

120 Sensitivity Analysis

7.3 Exercises

Exercise 7.1. Solve the linear programming problem in Exercise 6.1 using
Solver. Provide the Answer Report and Limits Report generated by Solver.
Explain all the details given in these reports.

Exercise 7.2. Explain why Highlight 7.2.1 is true for non-degenerate Linear
Programming problems with multiple solutions.

8

Integer Linear Programming

8.1 Introduction

Many applications of Linear Programming do not welcome fractional solu-
tions. For example, why would anyone want to spend resources to produce 3

8
of a blender? If a Linear Programming model requires integer solutions, it is
natural to assume that we may use the techniques previously learned to solve
the problem over the real numbers, then round the solution. Unfortunately,
this does not always yield a feasible solution. Consider the following example:

Example 8.1.1. [Anna’s Cozy Home Furnishings] Anna’s Cozy Home Fur-
nishings (ACHF) handcrafts two kinds of quality hardwood tables for local fur-
niture stores. The company offers a simple Farmhouse model and an elegant
Designer model. It takes 1 labor-hour to cut each Farmhouse model whereas
each Designer table takes 2 labor-hours to cut. Assembly and finishing time
for the Farmhouse model is 3 labor-hours and 5 for the Designer. ACHF as-
sembles and finishes the tables and has a total of 71 labor-hours available per
week but contracts the cutting externally and by contract must place an order
requiring at least 30 hours per week of cutting. ACHF rents its assembly and
finishing facility to another company on the weekends and, as such, they can
leave no materials or unfinished tables on site. ACHF makes a profit of $100
per farmhouse table sold and $250 per designer model. Assuming all tables
ACHF produces will sell, what should ACHF weekly production be in order to
maximize profit?

Letting x represent the number of Farmhouse tables produced and y the
number of Designer tables, the Linear Programming model for this problem
is

Maximize P = 100x+ 250y (8.1)

Subject to 3x+ 5y ≤ 71, (assembly and finishing constraint)

1x+ 2y ≥ 30, (cutting constraint)

x, y ≥ 0 and integer-valued.

The graph of the feasible region is

DOI: 10.1201/9780367425517-8 121

https://doi.org/10.1201/9780367425517-8

122 Integer Linear Programming

The optimal solution as a linear programming problem is to produce 0
Farmhouse models and 14.2 Designer models, but this is not realistic as ACHF
cannot have unfinished tables around. If we consider rounding, 0 Farmhouse
models and 14 Designer models is certainly feasible, but this may not be
optimal. Note that making 1 Farmhouse model and 14 Designer models is not
feasible. As we will see shortly, the optimal integer solution is actually to make
3 Farmhouse models and 13 Designer models.

The points in an n dimensional rectangular coordinate system with all co-
ordinates integer are called lattice points. As we saw in the discussion at the
beginning of this section, considering lattice points neighboring the LP solu-
tion over the reals (i.e. rounding) does not necessarily yield the ILP solution.

We present two integer linear programming techniques whose approaches
both involve whittling away parts of the feasible region until an integer-valued
solution is obtained.

8.2 Dakin’s Branch and Bound

Our first solution technique was introduced by R.J. Dakin in 1964 [13] which
improves on a technique introduced by A.H. Land and A.G. Doig in 1960 [41].
This approach solves the LP problem over the reals, then introduces bounds
in hope of obtaining a solution. It should be noted that this process is not
guaranteed to terminate or to give a globally optimal solution.

Algorithm 8.2.1 Dakin’s Branch and Bound Algorithm for ILP.

Input: LP problem to be solved over the integers.
1: Solve the linear programming problem over the real numbers.
2: Identify a decision variable xi whose solution is a non-integer value bi.
3: Branch the LP problem into two new problems by introducing into one

subproblem the constraint xi ≤ ⌊bi⌋ and into the other subproblem intro-
duce the constraint xi ≥ ⌈bi⌉.

4: Solve each branch as an LP problem over the reals. If either has a lattice
point as its solution, stop. Else repeat step 1 for both branches.

Output: A local solution for an Integer Linear Programming problem.

Note that Algorithm 8.2.1 can be repeated as needed in hopes of getting
a local solution closer to a global solution. As we will see in Example 8.2.2,
we may not want to terminate our search at the first local solution.

Dakin’s Branch and Bound 123

The first set of subproblems of Algorithm 8.2.1 is illustrated in the follow-
ing tree (note: we are free to choose the xi with which we wish to work):

Max P in R over constraints at (x∗
1, . . . , x

∗
n)

Max P1 at (x∗
1, . . . , x

∗
n) Max P2 at (x∗

1, . . . , x
∗
n)

xi ≤ ⌊x∗
i ⌋ xi ≥ ⌊x∗

i ⌋

Before continuing, an important observation.

Observation 8.2.1. Each branch of Dakin’s method introduces a new con-
straint which shrinks the feasible region hence the optimal value at each branch
can be no better than the value before the new constraints were introduced.

In other words, if we seek to maximize a function P and have found an
LP solution P ∗, branching will lead to values P ∗

1 and P ∗
2 where P ∗

1 ≤ P ∗ and
P ∗
2 ≤ P ∗. Whereas if we seek to minimize a function C and have found an

LP solution C∗, branching will lead to values C∗
1 and C∗

2 such that C∗
1 ≥ C∗

and C∗
2 ≥ C∗. This is illustrated in returning to Anna’s Cozy Home Furniture

(Example 8.2.2) in the following example:

Example 8.2.2 (ACHF Tables using Dakin’s Branch and Bound). Solving
over the reals gives a maximum profit of P = $3550 when producing x = 0
Farmhouse tables and y = 14.2 Designer tables. The problem now branches
into two LP problems with the first branch having the additional constraint
that y ≤ 14 and the second branch y ≥ 15. Branch 1 yields P ∗ = $3550 at
(0.5, 14) where Branch 2 has an empty feasible region. We then further split
Branch 1 into Branches 3 and 4 by respectively introducing the constraints
x ≤ 0 (i.e. x = 0) and x ≥ 1. Branch 3 yields P ∗ = 3500 at (0, 14) where
Branch 4 gives P ∗ = 3550 at (1, 13.8). Branch 3 has an integer solution, but we
may be able to do better than its profit of $3500. Branch 4 further subdivides
by introducing the constraints y ≤ 13 (Branch 5) and y ≥ 14 (Branch 6).
Branch 6 has an empty feasible region whereas Branch 5 produces P ∗ = $3550
at (3, 13). Continuing down any branch would only lead to smaller values for
P , thus we terminate the process.

The example is summarized in the following tree and in Table 8.1 (note
that the table does not include the nonnegativity constraints):

124 Integer Linear Programming

TABLE 8.1
LP Branches of Dankin’s Method for Example 8.2.2, ACHF Tables

Branch Introduce Constraints Removing Relaxed Solution
Redundancies over R

2x+ 5y ≤ 71, 3550 at (0, 14.2)
x+ 3y ≥ 30

1 y ≤ 14 2x+ 5y ≤ 71,
x+ 3y ≥ 30, 3550 at (0.5, 14)

y ≤ 14

2 y ≥ 15 2x+ 5y ≤ 71,
x+ 3y ≥ 30, Not feasible

y ≥ 15

3 x ≤ 0 2x+ 5y ≤ 71,
x+ 3y ≥ 30, 3500 at (0, 14)
y ≤ 14, x = 0

4 x ≥ 1 2x+ 5y ≤ 71,
x+ 3y ≥ 30, 3550 at (1, 13.8)
y ≤ 14, x ≥ 1

5 y ≤ 13 2x+ 5y ≤ 71, 2x+ 5y ≤ 71,
x+ 3y ≥ 30, x+ 3y ≥ 30, 3550 at (3, 13)

y ≤ 14,x ≥ 1,y ≤ 13 y ≤ 13, x ≥ 1

6 y ≥ 14 2x+ 5y ≤ 71, 2x+ 5y ≤ 71,
x+ 3y ≥ 30, x+ 3y ≥ 30, Not Feasible

y ≤ 14, x ≥ 1, y ≥ 14 y = 14, x ≥ 1

P = 3550 at (0, 14.2)

P = 3550 at (0.5, 14) not feasible

P = 3500 at (0, 14) P = 3550 at (1, 13.8)

P = 3550 at (3, 13) not feasible

y ≤ 14 y ≥ 15

x = 0 x ≥ 1

y ≤ 13 y ≥ 14

Dakin’s Branch and Bound 125

FIGURE 8.1
Feasible region for Anna’s tables.

Discussion 8.2.3 (When to terminate Dakin’s Branch and Bound Algorithm
(Algorithm 8.2.1)). Our stated algorithm for Dankin’s Branch and Bound
method was intentionally not precise and, in particular, we stated that the
algorithm terminates when an integer solution is found. This was not how we
proceeded in Example 8.2.2, namely we kept going even though we found an
integer solution in Branch 3 (Note: there is no need to continue further
along this branch as we have an integer solution and further work
along this branch would decrease P). This is typically how the procedure
is implemented and, unlike with the Simplex Method, using Algorithm 8.2.1 (or
even a more precise version) on a bounded feasible region will not guarantee
that the procedure will terminate at the globally optimal value. Excel 2016’s
Solver, for example, knows what the globally optimal value is over the reals
(by the Simplex Method) and will branch and bound until an integer solution
is within a certain tolerance of the global solution over the reals.

We will close this section by illustrating the cuts in the feasible region in
Example 8.2.2 that occurred by following Branches 1, 4, and 5. Recall that
the original feasible region is illustrated in Figure 8.1.

Before introducing a second technique, let us consider a slightly more in-
volved example.

Example 8.2.4 (Soylent Foods). Soylent Foods, a local farm-to-table food
service, makes two natural foods from soy and lentil beans and – as part of

126 Integer Linear Programming

FIGURE 8.2
Feasible region for Anna’s tables after Branch 1 cut.

FIGURE 8.3
Feasible region for Anna’s tables after Branch 4 cut.

Dakin’s Branch and Bound 127

FIGURE 8.4
Feasible region for Anna’s tables after Branch 5 cut.

their marketing campaign – the foods are named after the hues “Blue” and
“Yellow” and are sold in bulk. Each may be consumed individually or mixed
to form the popular “Green”. Every unit of “Blue” requires 3lbs of soy beans
and 7lbs of lentil beans. The “Yellow” units require 5lbs of soy and 8lbs of
lentil beans. Soylent Foods has available each week 200lbs of soy beans and
350lbs of lentil and makes a profit of $62 on each unit of “Blue” sold and
$71 on each unit of “Yellow” sold. How many units of each food type should
Soylent Foods produce in order to maximize weekly profit?

We (again) assume that Solyent Foods will sell all units they produce, that
only whole units will be produced, and we let x and y respectively represent
the number of units of “Blue” and “Yellow” produced. Thus the model for
this problem is:

Maximize: P (x, y) = 62x+ 71y (8.2)

Subject to: 3x+ 5y ≤ 200 (soy beans) (8.3)

7x+ 8y ≤ 350 (lentil beans) (8.4)

x, y ≥ 0 and integer-valued. (8.5)

The process tree for Dankin’s Branch and Bound method is (note that all
numbers are truncated at the hundredths place):

128 Integer Linear Programming

P = 3104.54 at (13.63, 31.81)

P = 3092.20 at (13, 32.2) P = 3104.50 at (14, 31.5)

P = 3078 at (13, 32) 3066.33 (11.66, 33) 3104.42 (14.57, 31) not feasible

P = 3069 at (14, 31) P = 3104.37 at (15, 30.62)

P = 3104.28 at (15.71, 30) not feasible

P = 3060 at (15, 30) P = 3104.25 at (16, 29.75)

P = 3104.14 at (16.85, 29) not feasible

P = 3051 at (16, 29) P = 3104.12 at (17, 28.87)

P = 3104 at (18, 28) not feasible

x ≤ 13 x ≥ 14

y ≤ 32 y ≥ 33 y ≤ 31 y ≥ 32

x ≤ 14 x ≥ 15

y ≤ 30 y ≥ 31

x ≤ 15 x ≥ 16

y ≤ 29 y ≥ 30

x ≤ 16 x ≥ 17

y ≤ 28 y ≥ 29

8.3 Gomory Cut-Planes

The next technique we consider for solving ILP problems is from R.E. Gomory
in 1958[29]. Gomory’s method is similar to Dankin’s in that each iteration cuts
pieces from the feasible region.

Gomory Cut-Planes 129

Suppose we wish to solve

Maximize: P (x, y, z) = 5x+ 3y + 2z (8.6)

Subject to: x+ 2y + 3z ≤ 35 (8.7)

2x+ y + 4z ≤ 33 (8.8)

3x+ 2y + 2z ≤ 56 (8.9)

x, y, z ≥ 0 and integer-valued.

As in Dankin’s Branch and Bound technique, we relax the integer require-
ment and solve the LP problem. Two iterations of the Simplex Method gives

x y z s1 s2 s3 P
1 2 3 1 0 0 0 35
2 1 4 0 1 0 0 33
3 2 2 0 0 1 0 56

−5 −3 −2 0 0 0 1 0



→


x y z s1 s2 s3 P
0 1 2

3
2
3 − 1

3 0 0 37
3

1 0 5
3 − 1

3
2
3 0 0 31

3
0 0 − 13

3 − 1
3 − 4

3 1 0 1
3

0 0 25
3

1
3

7
3 0 1 266

3

 (8.10)

which has as its solution

x =
37

3
, y =

31

3
, z = 0 and P =

266

3
.

The relaxed LP solution does not meet the integrality condition of the
original ILP problem, so we must do more. Our approach this time will be to
focus on the first row of the final Simplex tableau in 8.10 and note that this
row corresponds to the equation:

y +
2

3
z +

2

3
s1 −

1

3
s2 =

37

3
. (8.11)

Solving for y and writing the right side in the form constant term -
variable terms (note: each variable written with the operation subtraction)
we get

y =

constant︷︸︸︷
37

3
−

−variables︷ ︸︸ ︷
2

3
z − 2

3
s1 −

(
−1

3
s2

)
(8.12)

(the reasons for what we do will be clear shortly).
We now write each number of the right side as an integer +

positive fraction which gives

y = 12 +
1

3
−
(
0 +

2

3

)
z −

(
0 +

2

3

)
s1 −

(
−1 + 2

3

)
s2. (8.13)

130 Integer Linear Programming

Collecting integer and fractional parts on the right:

y = 12 + 1s2 +

[
1

3
− 2

3
z − 2

3
s1 −

2

3
s2

]
. (8.14)

Since y, 12, and s2 are integers,
[
1
3 −

2
3z −

2
3s1 −

2
3s2
]
must be an integer.

Moreover, since z, s1, and s2 are nonnegative, this expression has amaximum
of 1

3 . Thus
1

3
− 2

3
z − 2

3
s1 −

2

3
s2 ≤ 0 (8.15)

which gives the equality constraint with a new surplus variable

2

3
z +

2

3
s1 +

2

3
s2 − t1 =

1

3
. (8.16)

Thus we now have a new constraint (8.16) that we can introduce into
the tableau solving the last iteration of the relaxed ILP problem. This new
constraint is called a Gomory cut or a cut-plane.

Introducing 8.16 into the second tableau of 8.10 gives

x y z s1 s2 s3 t1 P

0 1 2
3

2
3 − 1

3 0 0 0 37
3

1 0 5
3 − 1

3
2
3 0 0 0 31

3

0 0 − 13
3 − 1

3 − 4
3 1 0 0 1

3

0 0 − 2
3 − 2

3 − 2
3 0 1 0 − 1

3

0 0 25
3

1
3

7
3 0 0 1 266

3


(8.17)

Notice the basic solution to this system with the new constraint has t =
− 1

3 , which is not feasible, therefore the Simplex Method performed on the first
primal form is not guaranteed to work. We must turn to the Big M Method
(noting that t1 is a surplus variable):

x y z s1 s2 s3 t1 a1 P

0 1 2
3

2
3 − 1

3 0 0 0 0 37
3

1 0 5
3 − 1

3
2
3 0 0 0 0 31

3

0 0 − 13
3 − 1

3 − 4
3 1 0 0 0 1

3

0 0 2
3

2
3

2
3 0 −1 1 0 1

3

0 0 25
3

1
3

7
3 0 0 M 1 266

3


(8.18)

Gomory Cut-Planes 131

We now repeat the procedure and hope for convergence. To summarize,

Algorithm 8.3.1 Gomory Cuts for ILP.

Input: LP problem to be solved over the integers.
1: Solve the linear programming problem over the real numbers.
2: Select any row from the final simplex tableau except the row corresponding

to the objective function. Let

x, c1t1, c2t2, . . . , cktk, b

represent the selected row where x and the ti are variables and the ci and
b are constants.

3: Write the equation represented by the selected row; that is

x+ c1t1 + c2t2 + · · ·+ cktk = b.

4: Solve for one of the variables and rewrite the right-hand side of the solution
in the form Constant − Variables.

x = b− c1t1 − c2t2 − · · · cktk.

5: After factoring out a negative in each variable term on the right-hand
side, write each number factored number that remains as an Integer +
a Positive Fraction.

x = (Ib + fb)− (Ic1 + fc1)t1 − (Ic2 + ft2)t2 − · · · (Ick + fck)tk

where the Ii are integers and the fk are positive fractions.
6: Collect all the integer and fraction parts on the right-hand side.

x =

integers︷ ︸︸ ︷
(Ib − Ic1t1 − · · · Icktk)+

fractions︷ ︸︸ ︷
(−fb − fc1t1 − · · · − fcktk) .

7: Since x, Ib, Ic1tc1 , . . . Icktck are all integers, −fb − fc1t1 − · · · − fcktk must
be an integer. Moreover, it is nonnegative.

8: Thus −fb−fc1t1−· · ·−fcktk < 0, which is the new constraint introduced
into the most recent Simplex tableau solving the LP problem. This cut
does not remove a location of the globally optimal solution.

9: Repeat.

Remark 8.3.1. Answering an integer LP question exclusively using Gomory
Cuts can be incredibly tedious as a tremendous quantity of cuts must be made
to obtain some convergence. These cuts were initially seen as not effective
in practice until the work of Géard Cornuéols and colleagues of the Tepper
School of Business at Carnegie Mellon University [12] showed they can be quite

132 Integer Linear Programming

effective when combined with branch and bound techniques. At the writing of
this text, most software uses a hybrid technique which is a combination of
Dankin’s Branch and Bound and Gomory Cuts.

8.4 For Further Study

There related problems that involve different solution techniques. Two im-
portant examples are Balas’ Method (or related methods) for solving Binary
Programming questions (the decision variables take on the values of 0 or 1)
and Mixed-Integer Programming where we require only some of the decision
variables to be integer valued.

8.5 Exercises

Exercise 8.1. Solve the following problem by incrementally using Dakin’s
Branch and Bound Method:

Maximize P (x1, x2, x3) = 4x1 + 3x2 + 3x3

Subject to:

4x1 + 2x2 + x3 ≤ 10 (8.19)

3x1 + 4x2 + 2x3 ≤ 14 (8.20)

2x1 + x2 + 3x3 ≤ 7 (8.21)

where x1, x2, x3 are nonnegative integers.
Draw a decision tree with your answers to the subproblems as in Example

8.2.4. As well, for each iteration of the particular path you are following,
please clearly state the LP problem you are answering. You may use Solver
(or a program of your choice) to answer each of these individual LP problems.

Exercise 8.2. Use Solver (or a program of your choice) to answer the above
question as a LP problem. Observe the computation time (should be incredibly
fast). Return to the original problem, solve it a second time but choose“integer”
as a constraint for each of the decision variables. Do this a third time but
change the tolerance under “Options” to 0.1% or less. Observe the computa-
tion time for the IP problem. This should be a little longer, but for this small of
a problem the difference in computation time is probably not very noticeable.
Submit the Answer Report for the third run of the problem (if you are using
software or a program other than Solver, submit a screenshot of the program’s
output).

Exercises 133

Exercise 8.3. Solve the following problem by hand incrementally using Cut-
Planes:

Minimize C(x, y) = x− y

Subject to:

3x+ 4y ≤ 6 (8.22)

x− y ≤ 1 (8.23)

where x and y are nonnegative integers.

1. State the modified Linear Programming problem (what we have after in-
troducing slack, surplus, and artificial variables, etc.);

2. graph the feasible region;

3. provide the initial simplex tableau;

4. begin iteratively introducing Gomory cuts until an integer solution is at-
tained where for each iteration:

(a) clearly show work supporting why you have introduced a particular
cut-plane (i.e. the new constraint),

(b) write down the new LP problem (the one from the previous iteration
plus the new constraint) and the new initial Simplex Tableau,

(c) provide a diagram showing the feasible region for the decision vari-
ables and

(d) use any computer resource to find the final simplex tableau for this
iteration’s LP and provide the final Simplex tableau (a screen shot is
acceptable).

Exercise 8.4. Solve the following problem by hand incrementally using Go-
mory Cut-Planes:

Maximize P (x1, x2, x3) = 4x1 + 3x2 + 3x3

Subject to:

4x1 + 2x2 + x3 ≤ 10 (8.24)

3x1 + 4x2 + 2x3 ≤ 14 (8.25)

2x1 + x2 + 3x3 ≤ 7 (8.26)

where x1, x2, x3 are nonnegative integers.

1. State the modified Linear Programming problem (what we have after in-
troducing slack, surplus, and artificial variables, etc.);

2. provide the initial simplex tableau;

3. begin iteratively introducing Gomory cuts until an integer solution is at-
tained where for each iteration:

134 Integer Linear Programming

(a) clearly show work supporting why you have introduced a particular
cut-plane (i.e. the new constraint),

(b) write down the new LP problem (the one from the previous iteration
plus the new constraint) and the new initial Simplex Tableau, and

(c) use any computer resource to find the final simplex tableau for this
iteration’s LP and provide the final Simplex tableau (a screen shot is
acceptable).

Exercise 8.5. Use Solver (or a program of your choice) to answer the fol-
lowing IP question (you are advised to not answer this by hand!). Do note
that solving the problem requires making certain decision variables binary (i.e.
0–1) variables. If you are running Solver, there is an option in the drop-down
list box for the binary constraint (this is the box with “<=”, etc.).

(From Ragsdale [47]) In his position as vice president of research and de-
velopment (R&D) for CRT Technologies, Mark Schwartz is responsible for
evaluating and choosing which R&D projects to support. The company received
18 R&D proposals from its scientists and engineers and identified six projects
as being consistent with the company’s mission. However, the company does
not have the funds available to undertake all six projects, so Mark must deter-
mine which projects to select. The funding requirements for each project are
summarized in the following table along with the NPV (Net Present Value;
let’s not worry about what that means) the company expects each project to
generate.

Project Expected Year Year Year Year Year
NPV 1 CR 2 CR 3 CR 4 CR 5 CR

1 $141 $75 $25 $20 $15 $10
2 $187 $90 $35 $0 $0 $30
3 $121 $60 $15 $15 $15 $15
4 $83 $30 $20 $10 $5 $5
5 $262 $100 $25 $20 $20 $20
6 $127 $50 $20 $10 $30 $40

KEY: NPV = Net Present Value; CR = Capital Required.
NOTE: all dollar values are in $1,000’s

(So think of NPV as revenue and CR as costs.)

The company currently has $250,000 available to invest in new projects.
It has budgeted $75,000 for continued support for these projects in year 2 and
$50,000/year for years 3,4,and 5. Surplus funds in any year are reappropriated
for other uses within the company and may not be carried over to future years
(note: this actually makes the problem easier).

So, what projects should the company select in order to maximize NPV?
(Note to all future analysts; please begin your solution by clearly stating what
your decision variables are and what they represent and clearly state the
model.) Submit your model and the answer report.

Part III

Nonlinear (Geometric)
Programming

http://taylorandfrancis.com

9

Calculus Review

Many techniques used in this text will require some knowledge of various lev-
els of Calculus, especially multivariable Calculus. This chapter provides a re-
fresher of relevant Calculus topics and may either be read carefully, skimmed,
or visited as needed.

Certainly we can work in the algebraic completion of the reals, namely do
our analysis in Cn, or even a more abstract space; but as Optimization very
often involves applications to real-world problems, we choose to do our work
in this text in Rn.

9.1 Derivatives and Continuity

No ϵ - δ proofs will be done in this text, but limits will be used and the reader
should be familiar with their properties, including the notion of directional
limits. We remind the reader that the derivative of a function (if it exists) at
the point x = a gives the slope of the tangent line at x = a. Recall also that a
tangent line is the result of a limiting process on secant lines. More formally,

Definition 9.1.1 (The Derivative). Let f(x) be a function where x is a real-
valued variable. For variables x, y, the derivative of f(x) is defined to be

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
= lim

y→x

f(y)− f(x)

y − x
. (9.1)

f(x) is said to be differentiable at a if f ′(a) exists (i.e. if the limit in 9.1
exists). f(x) is differentiable over an interval I if it is differentiable at every
point in I.

Other notations for f ′(x) are

df

dx
,
d

dx
f(x), Df(x), and Dxf(x).

DOI: 10.1201/9780367425517-9 137

https://doi.org/10.1201/9780367425517-9

138 Calculus Review

(1, e)

FIGURE 9.1
The discontinuous function in Example 9.1.3.

Another important use of limits is qualifying a valuable property of func-
tions:

Definition 9.1.2 (Continuity). A function f(x) is said to be continuous at
x = a if

lim
x→a

f(x) = f(a).

Definition 9.1.2 agrees very well with our intuition. Consider

Example 9.1.3. The piecewise function

f(x) =

{
x+ 1 for x ≠ 1

e for x = 1

is not continuous at x = 1 as

lim
x→1

f(x) = 2 ̸= e = f(1).

We will assume familiarity with derivative rules and integration techniques
of single-variable functions and remind the reader of some important theorems
involving derivatives, integrals, and continuity.

Theorem 9.1.4 (The Intermediate Value Theorem). Suppose f(x) is con-
tinuous on [a, b] and that N be any number between f(a) and f(b) where
f(a) ≠ f(b). Then there is a number c in (a, b) such that f(c) = N .

Though the result of the Intermediate Value Theorem seems intuitively
obvious, its proof relies on the Completeness Property of the Real Numbers
and can be found in a beginning Real Analysis text (see [59], for example).

Derivatives and Continuity 139

f(a) = f(b)

FIGURE 9.2
A case illustrating Rolle’s theorem.

There also is a nice relationship between differentiation and continuity:

Theorem 9.1.5. If f(x) is differentiable at a, then it is continuous at a.

Next we consider how derivatives and integrals are involved in averages.
An important tool for these is

Theorem 9.1.6 (Rolle’s Theorem). Suppose f(x) is continuous on [a, b] and
differentiable on (a, b) with f(a) = f(b). Then there is a number c in (a, b)
such that f ′(c) = 0.

Rolle’s Theorem is the mathematical equivalent of “What goes up must
come down” as shown in the following figure (and, of course, Rolle’s Theorem
also means “What goes down must come up”...)

Rolle’s Theorem is an important part of establishing

Theorem 9.1.7 (The Mean Value Theorem). Let f(x) be continuous on [a, b]
and differentiable on (a, b) with a ̸= b. Then there is a c in (a, b) such that

f ′(c) = f(b)−f(a)
b−a .

There is a geometric interpretation of the Mean Value Theorem, namely
that somewhere in the interval there is a place where the tangent at that point
is parallel to the secant line joining (a, f(a)) to (b, f(b)).

Note that this geometric interpretation helps us to remember the result.
The Mean Value Theorem is amazingly useful. Most of the important

results that are studied at the end of a typical Calculus 1 class hold because
of this theorem (e.g., the Mean Value Theorem is the mathematical reason
behind why there is a +C when we do indefinite integrals; see exercise 9.4).

An incredibly useful extension of the Mean Value Theorem is

Theorem 9.1.8 (Extended Mean Value Theorem). Let f(x) be a twice dif-
ferentiable function on the interval (s, t) with a and b in (s, t). Then there is
a c between a and b where

f(b) = f(a) + f ′(a)(b− a) +
1

2
f ′′(c)(b− a)2. (9.2)

140 Calculus Review

(a,f(a))

(b,f(b))

c

FIGURE 9.3
Illustrating the mean value theorem.

It is the case that 9.2 is a merely a special case of Taylor’s Theorem (to
come in Theorem 9.2.3), but it is important enough to merit its own name.
Additionally, it can be proven without Taylor’s Theorem via either integration
by parts together with the Mean Value Theorem for Integrals (see below) or
by a direct calculation using Rolle’s Theorem.

Not to be left out, integrals also have a theorem about averages.

Theorem 9.1.9 (The Mean Value Theorem for Integrals). Let f(x) be con-
tinuous on [a, b]. Then there is a number c in [a, b] such that

f(c)(b− a) =

∫ b

a

f(x) dx. (9.3)

The geometric meaning of the Mean Value Theorem for Integrals is that if
f(x) is a positive function that is continuous over [a, b], then there is place c
in the interval where the area under the curve is equal to the rectangle formed
by the interval and f(c). Moreover, if we rewrite 9.3 as

f(c) =
1

b− a

∫ b

a

f(x) dx = average value of f(x) over [a, b]

we see that the Mean Value Theorem for Integrals tells us that there is a place
in the interval, c, where the value of f(x) at c equals the average value of the
function over the interval.

Theorem 9.1.9 can be generalized to

Theorem 9.1.10 (Generalized Mean Value Theorem for Integrals). Let g(x)
be continuous over [a, b] and h(x) integrable over [a, b] with h(x) ̸= 0 for all x
in [a, b]1. Then there is a c in (a, b) such that∫ b

a

g(x)h(x) dx = g(c)

∫ b

a

h(x) dx.

1h(x) integrable means it is continuous and thus if it is never 0, h(x) will have the same
sign over the interval.

Taylor Series for Functions of a Single Variable 141

Note that it is common to refer to either Theorem 9.1.9 or Theorem 9.1.10
as the Mean Value Theorem for Integrals. Moreover, Theorem 9.1.10 reduces
to Theorem 9.1.9 by putting h ≡ 1.

Lastly, it would a crime against nature to not also state the Fundamental
Theorem of Calculus, part of which is directly derived from the Mean Value
Theorem.

Theorem 9.1.11 (The Fundamental Theorem of Calculus). Let f(x) be con-
tinuous over [a, b]. Then

1. If g(x) =
∫ x

a
f(t) dt, then g′(x) = f(x).

2.
∫ b

a
f(x) dx = F (b)− F (a) where F (x) is any antiderivative of f(x).

9.2 Taylor Series for Functions of a Single Variable

An incredibly valuable application of derivatives is using them to approximate
a function (provided the right amount of derivatives exist).

Early in Calculus 1 one learns that the equation of the line tangent for a
given function at a point. That is, if f(x) is differentiable at x0, then the line
tangent to f(x) at x0 = a is given by

y = f ′(a)x+ [f(a)− af ′(a)] = f(a) + f ′(a)(x− a) (9.4)

Example 9.2.1. To find equation of the line tangent to f(x) = x2 + 3 at
x = 1, we have f ′(x) = 2x. Thus by (9.4) the desired tangent line is

y = f ′(1)x+ [f(1)− 1f ′(1)] = 2x+ 2.

This example is illustrated in Figure 9.4.
Notice that the tangent line can serve as an approximation of the curve

and that this approximation works nicely for values near x = 1, but we get a
better approximation if we use higher degree polynomials instead of a linear
function. Hence

Definition 9.2.2 (Taylor Polynomial). Let f(x) be a function with an nth

order derivative in some open interval containing x0. The nth order Taylor
polynomial Tn is given by

Tn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

where f (k) is the kth derivative of f(x) with f (0)(x) = f(x) and k! = k(k −
1) · · · 1 with 0! := 1.

142 Calculus Review

-2 -1 1 2 3 4

5

10

15

20

FIGURE 9.4
f(x) = x2 + 3 and its tangent line at x = 1.

We may know how good of an approximation we have by

Theorem 9.2.3 (Taylor’s Theorem). Suppose that f(x) has n+1 derivatives
in some open interval containing the value a and let Rn(x) be the difference
(i.e. remainder) between f(x) and the nth order Taylor polynomial Tn(x) at
x = a, then

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t) dt.

We may state the remainder without involving an integral via

Theorem 9.2.4 (Lagrange’s Remainder Theorem). Let f(x) be a function
over some open interval I that has n+1 derivatives. Let Rn(x) be the remain-
der for Tn(x) and suppose a ∈ I. Then for every x in I there exists a value c
between x and a such that

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

If we wish not to have a remainder,

Definition 9.2.5 (Taylor Series). Let f(x) be a function with derivatives of
all orders at a. Then the Taylor series of f(x) at a is

∞∑
k=0

f (k)(a)

k!
(x− a)k. (9.5)

A Taylor series is just a name attached to the process of representing a
function as a power series where a power series is an expression of the form∑∞

k=0 ck(x−a)k. It is well-known that a power series converges either only at
its center a, over some interval (a − R, a + R) centered at a, or over all the

Taylor Series for Functions of a Single Variable 143

real numbers. The interval of convergence, I, of a power series and its radius
of convergence, R, can be found using the convergence tests discussed in any
Calculus text. Regarding rates of convergence, one should consult a Numerical
Analysis text.

Example 9.2.6. Find the Taylor series expansion of f(x) = ex at a = 0.

Solution.

k f (k)(x) f(k)(0)
k!

0 ex 1
1 ex 1
2 ex 1

2!
3 ex 1

3!
...

...
...

n ex 1
n!

...
...

...
Thus

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

and we can obtain Tn for any nonnegative integer by truncating the series at
the desired n. It is a short argument using the Ratio Test to show that the
stated infinite series converges for all real numbers. ■

We will close this section by stating a quite useful result related to the
previous theorems. This result is known as Taylor’s Formula.

Theorem 9.2.7 (Taylor’s Formula). Suppose f , f ′, and f ′′ all exist on a
closed interval I and that x and x∗ are distinct points in I. Then there exists
a c strictly between x and x∗ such that

f(x) = f(x∗) + f ′(x∗)(x− x∗) +
f ′′(c)

2
(x− x∗)2. (9.6)

Taylor’s Formula is quite useful in Optimization. If f ′(x∗) = 0 (we will see
in Chapter 10 that such an x∗ is called a critical point), and f ′′(x) > 0 for all
x ̸= x∗ in I, then by 9.6

f(x) = f(x∗) + 0 + something positive;

i.e.
f(x∗) < f(x) for all x ̸= x∗ in I.

That is, x∗ is a strict global minimizer for f over I. Similarly, if f ′′(x) < 0 for
all x ̸= x∗ in I, then x∗ is a strict global maximizer for f over I.

144 Calculus Review

9.3 Newton’s Method

We may use the ideas of the previous section to find approximations of zeros
of a function. We motivate the idea by trying to find a real root of f(x) =
x4−x2− 2. Since f(1) = −2, f(2) = 10, and f is continuous, we know by the
Intermediate Value Theorem that f(x) has a root in the interval (1, 2). Let
us now approximate the curve of f(x) by using its tangent line at x = 2. By
(9.4) we have that the tangent line at this point is y = 28x − 46 and finding
its zero is easy: x = 46

28 = 23
14 . Our strategy will be to find the line tanget to f

at this new point x = 23
14 and repeat the process.

In general, we are finding the root of the tangent line y = f(a)+f ′(a)(x−a)
at x0 = a to approximate a root of f(x). That is, solving

0 = f(x0) + f ′(x0)(x− x0) (9.7)

which gives (as long as f ′(x0) ≠ 0)

x = x1 = x0 −
f(x0)

f ′(x0)
. (9.8)

We then repeat the process now using the tangent line at x1. This gives the
iteration

xn+1 = xn −
f(xn)

f ′(xn)
(9.9)

and this process is known as Newton’s Method or the Newton-Raphson
Method.

Table 9.1 gives the values of the first few iterations of this method for our
example f(x) = x4− x2− 2. From this we see that xn → 1.414213562373 and
note that

√
2 is a root of x4 − x2 − 2.

We should address that not only will Newton’s method fail if f ′(xn) = 0,
but will occasionally fail when f ′(xn) is close to 0 (Newton’s method works
nicely for f(x) = x2, but this is not always the case). Also, there is the issue
of convergence. These matters are addressed in any good Numerical Analysis
text.

9.4 Vectors

The language of higher dimensions – functions of multiple variables – is spoken
in vectors. Recall that a vector in Rn is an n-tuple ⟨x1, x2, . . . , xn⟩ subject to
the rules

1. ⟨x1, x2, . . . , xn⟩ + ⟨y1, y2, . . . , yn⟩ = ⟨x1 + y1, x2 + y2, . . . , xn + yn⟩
(component-wise addition of vectors) and

Vectors 145

TABLE 9.1
Iterative Values of Newton’s Method for x4− x2− 2 with x0 = 2 (Truncated)

n xn

0 2
1 1.64285714285714
2 1.46393444394806
3 1.41718633854642
4 1.41422496580582
5 1.41421356254167
6 1.41421356237309
7 1.41421356237310
...

...√
2 1.41421356237309504

FIGURE 9.5
The vector ⟨3, 2⟩ drawn in standard position.

2. for any real number c, c⟨x1, x2, . . . , xn⟩ = ⟨cx1, cx2, . . . , cxn⟩ (scalar mul-
tiplication).

Though it may not be obvious from the stated definition, vectors relay two
key physical properties: magnitude and direction. As such, any two vectors
having the same magnitude and direction are regarded as being equal in spite
of their physical location. Thus we may always write a vector ⟨x1, x2, . . . , xn⟩
in standard position: that is, position it so that its initial point is at the
origin and its terminal point is at (x1, x2, . . . , xn). For example, the vector
⟨3, 2⟩ in R2 when written in standard position has its terminal point at (3, 2)
(see Figure 9.5). Thus there is a one-to-one correspondence (which is also an
isometry) between vectors drawn in standard position in Rn and points in Rn

and we will henceforth loosely treat the two as the same.

146 Calculus Review

9.5 Partial Derivatives

We now briefly consider some of the Calculus of multivariable functions. It
must be noted that there are concerns with derivatives of multivariable func-
tions existing and considering directional derivatives instead of just focusing
on partials with respect to particular variables; but we wish to not be a Cal-
culus text. There is an excellent treatment of this in [57].

Definition 9.5.1 (Partial Derivatives – two variables). If f(x, y) is a function
of two variables, then the partial derivatives fx and fy are defined by

fx = fx(x, y) =
∂f(x, y)

∂x
=

∂

∂x
f(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

and

fy = fy(x, y) =
∂f(x, y)

∂y
=

∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

The nuts and bolts of taking partial derivatives is given by

Rule 9.5.2. To find fx(x, y), regard y as a constant and differentiate with
respect to x. To find fy(x, y), regard x as a constant and differentiate with
respect to y.

As in single variable Calculus, higher derivatives are done by differentiating
the previous derivative. Care is needed, though, as fxy(x, y) means to first
differentiate f(x, y) with respect to x then differentiate that derivative with
respect to y where fyx(x, y) means to first differentiate f(x, y) this time with
respect to y then differentiate that derivative with respect to x. That is

fxy = fxy(x, y) =
∂

∂y

(
∂f(x, y)

∂x

)
(9.10)

and

fyx = fyx(x, y) =
∂

∂x

(
∂f(x, y)

∂y

)
. (9.11)

Example 9.5.3. For f(x, y) = x2y3 sin y, we have

fx = 2xy3 sin y thus fxy = 2x(y3 cos y + 3y2 sin y) (9.12)

and

fy = x2(y3 cos y + 3y2 sin y) thus fyx = 2x(y3 cos y + 3y2 sin y). (9.13)

One may have noticed the nice coincidence in this example that fxy = fyx.
This was no accident as there are many times when the order in which the
partials are done is irrelevant. The details are

Partial Derivatives 147

Theorem 9.5.4 (Two-variable Clairaut’s Theorem). Let D be any disk over
which f is defined and (a, b) ∈ D. If fxy and fyx are both continuous on D,
then fxy(x, y) = fyx(x, y).

Note that partial derivatives and Clairaut’s Theorem both translate nicely
to functions of more than two variables. Care is needed with higher order ver-
sions of Clairaut’s Theorem though, in that we must be certain that all vari-
ants of the mixed partials are continuous. That is, for example, that Clairaut’s
Theorem does not say that if fxyy and fyxy are continuous on some D that
fxyy = fyxy but rather that if fxyy, fyxy, and fyyx are continuous on some D
then fxyy = fyxy = fyyx.

Now that we have partial derivatives, we may define the multivariable
version of the first derivative:

Definition 9.5.5 (The Gradient of a Function of Two Variables). Let f(x, y)
be a function of two variables. The gradient of f is

∇f(x, y) := ⟨fx(x, y), fy(x, y)⟩.

Example 9.5.6. The gradient of the function given in Example 9.5.3 is

∇f(x, y) = ⟨2xy3 sin y, x2(y3 cos y + 3y2 sin y)⟩.

In general, we have

Definition 9.5.7. [The Gradient of a Function of Multiple Variables] Let
f(x1, x2, . . . , xn) be a multi-variable function mapping from Rn to R. The
gradient of f is

∇f(x1, x2, . . . , xn) :=

〈
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

〉
.

Just like the derivative of a single-variable function, the gradient gives the
slope of the tangent hyperplane to the graph of a function.

Also as the gradient is the “first derivative” of a multivariable function,
there is convenient notation for the “second derivative” of a multivariable
function:

Definition 9.5.8. [Hessian] Let f(x1, x2, . . . , xn) be a multi-variable function
mapping from Rn to R. The Hessian of f is

Hf =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 . (9.14)

148 Calculus Review

So far we have considered scalar valued functions; that is functions whose
output is a number. We now consider functions whose output is a vector.
Specifically, the function f in Definition 9.5.7 takes an n-dimensional input and
gives a single output, that is f : Rn → R. In some cases, we may want some-
thing like the gradient for a function whose output is also multi-dimensional,
say f : Rn → Rm where m > 1.

In this situation we have, say,

f(x1, x2, x3, . . . , xn) = f(x) =


f1(x)
f2(x)

...
fm(x)

 . (9.15)

With such a function, we will find it useful to define the Jacobian of f :

[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 . (9.16)

9.6 The Taylor Series of a Function of Two Variables

Taylor’s Theorem (Theorem 9.2.3) and its related theorems all extend nicely
to multivariable functions, though we will not restate each of them here. We
will, however, give attention to a function of two variables f(x, y) that has as
its Taylor Series at a point (a, b) and state a multivariable version of Taylor’s
Formula (Theorem 9.2.7).

Definition 9.6.1 (Two-Variable Taylor Series). Let f(x, y) be a function with
derivatives of all orders at (a, b). Then the Taylor series of f(x, y) centered
at (a, b) is

f(x, y) = f(a, b) + fx(a, b) · (x− a) + fy(a, b) · (y − b) +
1

2
fxx(a, b) · (x− a)2+

+
1

2
fxy(a, b) · (x− a)(y − b) +

1

2
fyx(a, b)(x− a)(y − b) +

1

2
fyy(a, b)(y − b)2+

+
1

3!
fxxx(a, b) · (x− a)3 +

1

3!
fxxy(a, b) · (x− a)2(y − b) + · · · .

(9.17)

Example 9.6.2. Find the 3rd order Taylor polynomial of f(x, y) = x sin y at
(0, 0).

The Taylor Series of a Function of Two Variables 149

f = x sin y

fy = x cos y

fyy = −x sin y
fyyy = −x cos y

fyyx = − sin y

fyx = cos y

fyxy = − sin y

fyxx = 0

fx = sin y

fxy = cos y

fxyy = − sin y

fxyx = 0

fxx = 0

fxxy = 0

fxxx = 0

Solution. We have
Thus

T3(0, 0) = 0+0+0+0+
1

2
·1(x−0)(y−0)+

1

2
·1(x−0)(y−0)+0+ · · ·+0 = xy

(9.18)
which gives us x sin y ≈ xy near (0, 0). ■

Note how nicely Example 9.6.2 illustrates Clairaut’s Theorem (Theorem
9.5.4).

Of course, Taylor Series and the related theorems all translate nicely to
functions of more than two variables, though the notation becomes quite cum-
bersome. For more detail, see [59].

As stated in the single variable case, Taylor’s Formula can be very useful
in Optimization. Hence we will close with the multivariable version.

Theorem 9.6.3 (Multivariable Taylor’s Formula). Suppose x = (x1, x2, . . . , xn)
and x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) are points in Rn. Suppose further that f(x) is a func-

tion of n variables with continuous first and second partial derivatives on some
open set containing the line segment joining x and x∗. Then there exists some
c on the line segment such that

f(x) = f(x∗) +∇f(x∗) · (x− x∗) +
1

2
(x− x∗) ·Hf(c)(x− x∗).

150 Calculus Review

9.7 Exercises

Exercise 9.1. The Gamma Function

Γ(x) :=

∫ ∞

0

tx−1e−t dt

is commonly used in probability theory. The function holds for any complex
number a + bi where a > 0 but we will only consider x ∈ R. Use integration
by parts to show that Γ(x+ 1) = xΓ(x).

Exercise 9.2. Consider Γ(x) from Exercise 9.1.

a) Evaluate Γ(1).
b) Using Exercise 9.1 and part a), calculate Γ(2), Γ(3), and Γ(4).
c) Let n be a positive integer. State and prove a conjecture about Γ(n) (as this

is a result on the positive integers, a proof by induction [Section A.4] is in
order).

Exercise 9.3. A function f(x) is convex over R if for all λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (9.19)

(see Definition 18.1.1). Show that if a function is convex, then its second
derivative f ′′(x) must be greater than 0.

Exercise 9.4. a) Use the Mean Value Theorem (Theorem 9.1.7) and Theo-
rem 9.1.5 to prove that if f ′(x) = 0 over an interval (a, b), then f(x) is
constant over that interval.

b) Use the result from the previous part of this exercise to prove that if f ′(x) =
g′(x), then f(x) = g(x) + c where c is some constant.

Exercise 9.5. Prove each of the following:

a) Rolle’s Theorem (Theorem 9.1.6).
b) Theorem 9.1.5.
c) The Mean Value Theorem (Theorem 9.1.7).
d) The Extended Mean Value Theorem (Theorem 9.1.8).
e) The Mean Value Theorem for Integrals (Theorem 9.1.9).
f) The generalized Mean Value Theorem for Integrals (Theorem 9.1.10).
g) The Fundamental Theorem of Calculus (Theorem 9.1.11).

Exercise 9.6. Let f(x) be a function that has as its power series centered at
a

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · .

Using the power series representation find f(a), f ′(a), f ′′(a), . . . , f (n)(a) thus
verifying 9.5 in Definition 9.2.5.

Exercises 151

Exercise 9.7. Prove Taylor’s Theorem (Theorem 9.2.3). [Hint: use the Fun-
damental Theorem of Calculus.]

Exercise 9.8. Prove Lagrange’s Remainder Theorem (Theorem 9.2.4).
[Hint: use the Taylor’s Theorem and the Mean Value Theorem for Integrals.]

Exercise 9.9. a) Find the Taylor series expansion of f(x) = cosx at a = 0.
b) State T4(x), the fourth degree Taylor approximation, of f(x) = cosx at

a = 0.
c) Show R4(x), the remainder between T4(x) and f(x) = cosx at a = 0 is

bounded above by x5

5! .

Exercise 9.10. a) Find the Taylor series expansion of f(x) = sinx at a = 0.
b) State T2(x), the fourth degree Taylor approximation, of f(x) = sinx at

a = 0.
c) Show R2(x), the remainder between T2(x) and f(x) = sinx at a = 0 is

bounded above by x3

3! .
d) What is the largest the error can be when using T2(x) = x to approximate

f(x) = sinx over the interval (−0.5, 0.5)? (This shows that the approxi-
mation sinx ≈ x near 0 for simple harmonic motion in Physics is a good
approximation.)

Exercise 9.11. Use Taylor’s Formula (Theorem 9.2.7) to show that x = 1 is
a strict global minimizer of f(x) = x4 − 4x3 + 6x2 − 4x+ 1 over R.

Exercise 9.12. Find an example where Newton’s Method will not converge.

Exercise 9.13. Use Newton’s Method to find the solution of the equation
sin(x) = x to to four decimal places (i.e. do enough iterations so that it is
clear the first four digits do not change).

Exercise 9.14. Use Newton’s Method to find the root of x3 − x + 1. Show
that this is the only root of this equation.

Exercise 9.15. Show that the derivative of the logistic function

σ(x) =
ex

1 + ex
=

1

1 + e−x

satisfies σ′(x) = σ(x)σ(−x). Find σ′′(x) and write it in terms of σ(x) and
σ(−x). Do the same for σ(n)(x).

Exercise 9.16. Let f(x) = 1
2x

TAx+bTx+c where A is a symmetric matrix.
Calculate ∇f and the Hessian Hf .

Exercise 9.17. In Machine Learning, it is common to use the sum-of-squares
function

E(w) =
1

2

N∑
n=1

[

M∑
j=0

(wjx
j)− yn]

2

152 Calculus Review

where x and y are regarded as constants (given data), and the wjs are variables
(chosen parameters for regression). Take the partial derivative with respect to
wj, j = 0, . . . ,M ; set the equation to 0 to find the minimum, and rewrite this
formula as a system of linear equations.

Exercise 9.18. In the previous problem, we assumed that the critical point
we found was a minimum without doing a derivative test. What property about
the function allows us to state that it must be a minimum?

Exercise 9.19. Find the third-order Taylor polynomial for f(x, y) = xey at
(0, 0).

Exercise 9.20. Use the Multivariable Taylor’s Formula (Theorem 9.6.3) to
show that f(x, y) = x2 + y2 has x = (0, 0)T as a global minimizer. [HINT:
Follow the comments following the single variable statement (Theorem 9.2.7)
and show ∇f((0, 0)T) = 0 while noting that for x∗ ̸= (0, 0)T , x∗ · x∗ > 0.]

10

A Calculus Approach to Nonlinear
Programming

As not all problems and constraints are linear, we now consider the class
of problems where any or all of the objective function and constraints are
nonlinear. As nonlinear programming questions belong to a harder class of
problems than linear programming questions, it is not surprising that many
solution techniques exist and are required for these kinds of problems. As
some nonlinear programming problems can be solved using familiar tools from
Calculus, we start here.

10.1 Using Derivatives to Find Extrema of Functions of
a Single Variable

Please see Chapter 9 for a review of the necessary Calculus technniques.
We begin by identifying the location of potential extreme values.

Definition 10.1.1 (Critical Point). Let x = c be a point in the domain of a
function f(x). c is called a critical point of f if c is in the domain of f(x)
and either f ′(c) = 0 or does not exist.

The following theorem explains why critical points are critical.

Theorem 10.1.2 (Fermat’s Theorem for Local Extrema). If x = c is a local
extrema and f(x) is differentiable at c, then f ′(c) = 0.

Proof. Suppose x = c is a location of a local maximum. Then by definition,
there is some ϵ > 0 such that for all x in (c − ϵ, c + ϵ), f(x) ≤ f(c) and we
thus have f(x)− f(c) ≤ 0. For x where c < x < c+ ϵ, we have x− c > 0 and

therefore f(x)−f(c)
x−c ≤ 0. Thus

lim
x→c+

f(x)− f(c)

x− c
≤ 0. (10.1)

For x where c − ϵ < x < c, we have then x − c < 0 and hence f(x)−f(c)
x−c ≥ 0.

Thus

lim
x→c−

f(x)− f(c)

x− c
≥ 0. (10.2)

DOI: 10.1201/9780367425517-10 153

https://doi.org/10.1201/9780367425517-10

154 A Calculus Approach to Nonlinear Programming

But f(x) is differentiable at c, so by 10.1

f ′(c) = lim
x→c+

f(x)− f(c)

x− c
≤ 0. (10.3)

Likewise, by 10.2

f ′(c) = lim
x→c−

f(x)− f(c)

x− c
≥ 0. (10.4)

As both f ′(c) ≤ 0 and f ′(c) ≥ 0, f ′(c) = 0.
The case when x = c is the location of a local minimum is similar and is

Exercise 10.1.

Hence Fermat’s Theorem for Local Extrema gives us a method for identify-
ing the location of possible extrema (namely, any extreme values of a function
over an open interval must occur at critical points), we need a technique to
help identify whether a given critical number is a local extrema or not and
when it is, if it is a relative minimum or maximum.

First,

Theorem 10.1.3 (Increasing/Decreasing Test). Suppose f(x) is differen-
tiable over an interval (a, b).

i) If f ′(x) > 0 over (a, b), then f(x) is increasing over (a, b).

ii) If f ′(x) < 0 over (a, b), then f(x) is decreasing over (a, b).

iii) If f ′(x) = 0 over (a, b), then f(x) is constant over (a, b).

Proof. We prove part i) and leave the proofs of the remaining parts as an
exercise.

Suppose f ′(x) > 0 over (a, b). Let x1, x2 be points in the interval with
x1 < x2. Since f(x) is differentiable over (a, b), by Theorem 9.1.5, f(x) is
continuous over [x1, x2]. Of course, f(x) is then also differentiable over (x1, x2).
Thus, by the Mean Value Theorem (Theorem 9.1.7), there is a c in (x1, x2)

such that f ′(c) = f(x2)−f(x1)
x2−x1

. As f ′(c) > 0 and x2 ̸= x1, f(x2) − f(x1) > 0
giving f(x2) > f(x1). As x1 and x2 are arbitrary points in (a, b), f(x) is
increasing over the interval.

Of course, as the derivative gives the slope of the tangent line and, thus, the
instantaneous rate of change of the function, the results of Theorem 10.1.3 are
intuitively obvious (but we do not rely on intuition for truth in Mathematics).
With this, we now have

Theorem 10.1.4 (The First Derivative Test). Suppose x = c is a critical
point of f(x) in some open interval I and I contains no other critical points
of f(x). Further suppose f(x) is continuous over I and differentiable at every
point in I except possibly at c. Then

i) if f ′(x) > 0 for x ∈ I with x < c but f ′(x) < 0 for x ∈ I with x > c, then
f(x) has a local maximum at x = c;

Using Derivatives to Find Extrema of Functions of a Single Variable 155

-2 -1 1 2

0.5

1.0

1.5

2.0

2.5

3.0

FIGURE 10.1
f(x) = 1

4x
4 − 1

2x
2 + 1 in Example 10.1.6.

ii) if f ′(x) < 0 for x ∈ I with x < c but f ′(x) > 0 for x ∈ I with x > c, then
f(x) has a local minimum at x = c; or

iii) if f ′(x) does not change sign at x = c, then f(x) does not have any local
extrema at x = c.

Or, if you prefer to not evaluate a function multiple times and do not mind
differentiating one more time

Theorem 10.1.5 (The Second Derivative Test). Let x = c be a critical point
of f(x) with f ′(c) = 0 and suppose f(x) and f ′(x) are differentiable and f ′′(x)
over some interval I containing c. Then

i) if f ′′(c) > 0, then f(x) has a local minimum at x = c;

ii) if f ′′(c) < 0, then f(x has a local maximum at x = c; and

iii) if f ′′(c) = 0, then the test is inconclusive.

Note that statement iii) of Theorem 10.1.5 is not a mistake (see Exercise
10.5).

Example 10.1.6. Use Calculus to find the (local) extreme values of f(x) =
1
4x

4 − 1
2x

2 + 1.

Solution. We have f ′(x) = x3 − x = x(x2 − 1), thus the critical numbers
are x = −1, 0, 1. Using the First Derivative Test would require making a
sign chart, thus we instead observe that f ′′(−1) = f ′′(1) = 2 > 0, thus
f(−1) = f(1) = 3

4 are local minimums whereas f ′′(0) = −1 < 0, hence
f(0) = 1 is a local maximum. The graph of f(x) is shown in Figure 10.1. ■

156 A Calculus Approach to Nonlinear Programming

FIGURE 10.2
Level curves z = 1, 2, 3, 4 on the surface of f(x, y) =

√
x2 + y2.

10.2 Calculus and Extrema of Multivariable Functions

The analogous statements for optimization with multivariable functions are
similar to their single-variable counterparts but often with some additional
detail1. We begin with the multivariable2 version of the first derivative

Definition 10.2.1 (The Gradient). Let z = f(x, y) be a function of two
variables. Then the gradient of f(x, y) is the vector

∇f(x, y) :=
〈
∂f

∂x
,
∂f

∂y

〉
.

The two-variable definition extends naturally to any function of n variables
where n > 2.

We now remind the reader of some important properties of the gradient.
Note that if z = f(x, y), that is, f(x, y) is a function of two variables, any
input into the function is a point in the x − y plane and the corresponding
output is a point in space. A curve where f(x, y) = k for some constant k is
called a level curve. The level curves for z = f(x, y) = 1, 2, 3, 4 on the surface

of the cone f(x, y) =
√
x2 + y2 are shown in Figure 10.2.

Remark 10.2.2. Let f(x, y) be a differentiable function. Then the gradient

of f(x, y), ∇f(x, y) :=
〈

∂f
∂x ,

∂f
∂y

〉
,

1As mentioned in the previous chapter, there are some concerns with derivatives of mul-
tivariable functions existing and considering directional derivatives instead of just focusing
on partials with respect to particular variables; but we wish to not be a Calculus text. There
is an excellent treatment of this in [57].

2Our presentation will be for functions of two variables, but the results extend naturally
to functions of more variables.

Calculus and Extrema of Multivariable Functions 157

FIGURE 10.3
∇f(1, 1) pointing in the direction of the greatest increase out of (1, 1, 1

2) in
Example 10.2.3. Here the y axis runs left-right and the x axis is coming out
of the page.

1. is a vector orthogonal to the level curves of f(x, y),

2. ∇f(a, b) is a vector which always points in the direction of the maximal
increase of f(x, y) from the point (a, b), and

3. −∇f(a, b) is a vector which always points in the direction of the maximal
decrease of f(x, y) from the point (a, b),

Proofs of the gradient properties noted in Remark 10.2.2 can be found
in most multivariable Calculus texts. A quality presentation of these can be
found in [57].

Example 10.2.3. Consider f(x, y) = − 1
2y

2+xy. Then ∇f(x, y) = ⟨y,−y+x⟩
and ∇f(1, 1) = ⟨1, 0⟩. A glance at Figure 10.3 shows this vector pointing in
the direction of the greatest increase in f(x, y) when leaving (1, 1, 1

2).

Equipped with the multivariable version of the derivative, we now have
the tools to address optimizing multivariable functions.

Definition 10.2.4 (Critical Point – two variables). A point (a, b) is a critical
point of f(x, y) if

• Both fx(a, b) = 0 and fy(a, b) = 0 (i.e. ∇f(a, b) = ⟨0, 0⟩), or
• fx(a, b) is undefined, or

• fy(a, b) is undefined.

As well, we have the following multivariable version of Fermat’s Theorem
for Local Extrema from single variable calculus:

158 A Calculus Approach to Nonlinear Programming

Theorem 10.2.5. [Two-variable Fermat’s Theorem for Local Extrema] If
f(x, y) has a local minimum or a local maximum at (a, b), then (a, b) is a
critical point.

The proof of Theorem 10.2.5 is very similar to the proof of the single
variable case (Theorem 10.1.2) and is left as Exercise 10.13.

Once a multivariable function’s critical points are known, we can follow
the same routine as in the single variable case to check for extrema. But a
Multivariable First Derivative Test is too cumbersome, so we instead use

Theorem 10.2.6 (The Second Partial Derivative Test for a Function of Two
Variables).
Let (a, b) be a critical point of f(x, y) where f(x, y) is a function with contin-
uous 2nd-order partial derivatives on some open disk containing (a, b). Put

D=D(a, b)=det (Hf(a, b))=

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ (a, b)=fxx(a, b)fyy(a, b)− [fxy(a, b)]
2

(10.5)
where Hf is the Hessian of f . If

i) if D > 0 and fxx(a, b) > 0,then f(a, b) is a local minimum;

ii) if D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum;

iii) if D < 0, then f(a, b) is not a local extreme value (in this case, the point
(a, b) is called a saddle point); or

iv) if D = 0, the test is inconclusive.

Note that the D of the Second Partial Derivative Test is the determinant
of the Hessian of f and by Clairaut’s Theorem (9.5.4) we have that fxy(a, b) =
fyx(a, b). Recall that for a quadratic function f(x) = ax2 + bx + c has D =
b2 − 4ac as its discriminant as, by the Quadratic Formula, this D determines
(“discriminates”) the nature of the roots of f(x). Similarly, as the D of The
Second Partial Derivative Test 10.2.6 discriminates how the critical points
behave, this D is referred to as the discriminant of f(x, y).

A proof of The Second Partial Derivative Test for a Function of Two
Variables involves directional derivatives, so it will be excluded here. Again,
a quality presentation of a proof can be found in [57].

We now present a classic example using these tools to find an extreme
value.

Example 10.2.7. Find the points on the cone z2 = x2 + y2 closest to the
point (4, 2, 0).

Solution. Let’s let d represent the distance from an arbitrary point on the
cone to the point (4, 2, 0). Hence d(x, y, z) =

√
(x− 4)2 + (y − 2)2 + (z − 0)2.

Since we are on the cone z2 = x2 + y2, we use this constraint to eliminate a
variable and obtain the unconstrained geometric programing problem

d(x, y, z) = d(x, y) =
√
(x− 4)2 + (y − 2)2 + x2 + y2. (10.6)

Calculus and Extrema of Multivariable Functions 159

Since d(x, y) is nonnegative, minimizing d2 will give us the point(s) that min-
imize d. Hence we seek to

Minimize f(x, y) = d2(x, y) = (x− 4)2 + (y − 2)2 + x2 + y2. (10.7)

To find critical points of d2:

fx(x, y) = d2x(x, y) = 2(x− 4) + 2x = 4x− 8, and (10.8)

fy(x, y) = d2y(x, y) = 2(y − 2) + 2y = 4y − 4. (10.9)

These partial derivatives are zero at (2, 1) and are never undefined, therefore
the only critical point is (2, 1). Moreover,

fxx = d2xx(x, y) = 4 (10.10)

fyy = d2yy(x, y) = 4 and (10.11)

fxy = d2xy(x, y) = fyx = d2yx(x, y) = 0. (10.12)

Hence D(2, 1) = 16 and since fxx(2, 1) > 0, by The Second Partial Derivative
Test (Theorem 10.2.6), the point (2, 1) minimizes d2. Since z2 = x2+y2, when
x = 2 and y = 1, z = ±

√
5.

Thus there are two points on the cone z2 = x2 + y2 that are a minimum
distance from (4, 2, 0), namely the points (2, 1,

√
5) and (2, 1,−

√
5). ■

The critical numbers in Example 10.2.7 were indeed places where extrema
of the function were located. Let us try one with a not as satisfying outcome.

Example 10.2.8. Find the extrema of the hyperbolic paraboloid

z = f(x, y) =
x2

2
− y2

3
. (10.13)

Solution. We have

∇f(x, y) = ⟨x,−2

3
y⟩ (10.14)

giving the only critical point as (0, 0). The Hessian of f(x, y) is

H =

[
1 0
0 − 2

3

]
(10.15)

so D(0, 0) = det (H|x=0,y=0) = − 2
3 < 0 and by the Second Partial Derivative

Test (Theorem 10.2.6) (0, 0) is a saddle point and f(x, y) = x2

2 −
y2

3 has no
extreme values. ■

Example 10.2.8 is illustrated in Figure 10.4.
For functions of three or more variables, the above technique’s generaliza-

tion involves quadratic forms and whether they are positive definite, negative
definite, or semidefinite. We will consider these matters in Chapter 12.

160 A Calculus Approach to Nonlinear Programming

FIGURE 10.4
A saddle point from Example 10.2.8.

10.3 Exercises

Exercise 10.1. Prove Theorem 10.1.2 for the case of a local minimum.

Exercise 10.2. Prove parts ii) and iii) of Theorem 10.1.3.

Exercise 10.3. Prove the single-variable Second Derivative Test (Theorem
10.1.4).

Exercise 10.4. Prove parts i) and ii) of the single-variable Second Derivative
Test (Theorem 10.1.5).

Exercise 10.5. To show part iii) of the single-variable Second Derivative
Test (Theorem 10.1.5):

i) Let f(x) = x4. Use the First Derivative Test (Theorem 10.1.4) to show
that f(x) has a local minimum at x = 0. Note f ′′(0) = 0.

ii) Let g(x) = −x4. Use the First Derivative Test (Theorem 10.1.4) to show
that g(x) has a local maximum at x = 0. Note g′′(0) = 0.

iii) Let h(x) = x3. Use the First Derivative Test (Theorem 10.1.4) to show
that h(x) does not have a local extreme value at x = 0. Note h′′(0) = 0.

Exercise 10.6. In high school algebra, one learns that the that a quadratic
function f(x) = ax2 + bx + c has exactly one extreme value (a maximum if
a < 0 and a minimum if a > 0). We are taught that extreme value occurs
at the vertex and are led to believe this by considering the graph of f(x). Use
calculus to properly prove this result from high school algebra.

Exercises 161

Exercise 10.7. Find all local extremes of f(x) = 2x3 − 6x2 − 18x over the
domain of the function. Justify any claim that an extreme value is a maximum
or minimum.

Exercise 10.8. Find all local extremes of g(x) = 3x4 + 4x3 − 36x2 over the
domain of the function. Justify any claim that an extreme value is a maximum
or minimum.

Exercise 10.9. Find all local extremes of h(x) = 3x4 − 4x3 − 6x2 + 12x
over the domain of the function. Justify any claim that an extreme value is a
maximum or minimum.

Exercise 10.10. Find all local extremes of k(x) = ex(x3 − 12x) over the
domain of the function. Justify any claim that an extreme value is a maximum
or minimum.

Exercise 10.11. Find any extreme values, if they exist – of the function
f(x, y) = xy2 subject to the constraint that x + y = 0. [Hint: solve the con-
straint for one variable and use this to eliminate a variable in the objective
function, then proceed as normal.] Explain why the Second Derivative Test
fails here.

Exercise 10.12. In Statistics, the Normal Distribution with mean µ and
standard deviation σ has as its probability density function

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ)

2

(the graph of f(x) is the familiar bell-curve).

a) Show f ′(x) = −
(
x−µ
σ

)
f(x).

b) Show x = µ
σ is the only critical number.

c) Using the First Derivative Test (Theorem 10.1.4), show f(x) has a (local)
maximum at x = µ

σ State the local maximum and provide a mathematical
argument that this is actually a global max.

Exercise 10.13. Prove Theorem 10.2.5; namely, if f(x, y) has an extreme
value at (a, b), then (a, b) is a critical point. [Hint: since a and b are fixed,
consider the single-variable functions g(x) = f(x, b) and h(y) = f(a, y) and
refer to the proof of the single variable case (Theorem 10.1.2)].

Exercise 10.14. Find all critical points for the stated function and determine
if each critical point is a relative minimum, relative maximum, or a saddle
point.

a) f(x, y) = exy

b) g(x, y) = x2 − 4x+ 2y2 + 4y + 5
c) h(x, y) = x2y2

d) k(x, y) = x3 − 12xy + y3

e) t(x, y) = x2+y2

2 + 2(y − x)− 3 ln(xy)

11

Constrained Nonlinear Programming:
Lagrange Multipliers and the KKT
Conditions

11.1 Lagrange Multipliers

This section continuous the use of Calculus to answer nonlinear optimization
questions; in particular, we will explore Lagrange multipliers. As this technique
generalizes to the important KKT conditions, the material deserves its own
separate treatment. Here we will seek extreme values of a function f not over
its entire domain, but rather maximums and minimums where the function
meets the constraint curve g. It can be proven (see [57]) that f has its extrema
on g at points x⋆ where the tangent vectors of these two functions are parallel;
that is ∇f(x⋆) = λ∇g(x⋆) where λ is a non-zero scalar. This fact leads to the
following optimization technique:

Method 11.1.1 (The Method of Lagrange Multipliers). If f(x, y, z) has a
relative extremum at (x∗, y∗, z∗) subject to the constraint g(x, y, z) = 0 where f
and g both have continuous first-order partial derivatives, then ∇f(x∗, y∗, z∗)
and ∇g(x∗, y∗, z∗) are parallel. Thus, if ∇g(x∗, y∗, z∗) ̸= 0, ∇f(x∗, y∗, z∗) =
λ∇g(x∗, y∗, z∗) for some real number λ.

Note that the Method of Lagrange Multipliers helps locate critical points.
More work should be done to very that a maximum or minimum exist at any
critical number. To simplify notation, we have stated a version of the method
for a function of three variables, but the method works for functions of any
number of variables.

To illustrate the method, let us return to Example 10.2.7.

Example 11.1.2. Find the points on the cone z2 = x2 + y2 closest to the
point (4, 2, 0).

Solution. If we let (x, y, z) be as arbitrary point, then its distance from (4, 2, 0)
is given by d(x, y, z) =

√
(x− 4)2 + (y − 2)2 + z2, but since d ≥ 0, the min-

imum of d occurs at the same place as the minimum of d2. As well we want

DOI: 10.1201/9780367425517-11 162

https://doi.org/10.1201/9780367425517-11

Lagrange Multipliers 163

our points to be on the cone z2 = x2 + y2, thus our problem is to

Minimize: f(x, y, z) = d2 = (x− 4)2 + (y − 2)2 + z2 (11.1)

Subject to: g(x, y, z) = x2 + y2 − z2 = 0. (11.2)

So

∇f(x, y, z) =⟨2x− 8, 2y − 4, 2z⟩ and (11.3)

∇g(x, y, z) =⟨2x, 2y,−2z⟩. (11.4)

Thus we have the system of equations

2x− 8 = λ2x (11.5)

2y − 4 = λ2y (11.6)

2z = −2λz (11.7)

x2 + y2 − z2 = 0 (11.8)

Rearranging equation (11.7) gives us

0 = 2z + 2λz = 2z(1 + λ)

which implies that either z = 0 or λ = −1.
Case 1: z = 0

If z = 0, then by equation (11.8), x2+y2 = 0. But this implies that x = y = 0
(since each term is squared, we are adding two nonnegative quantities and
getting 0). Thus we obtain (0, 0, 0), but realizing that ∇g(0, 0, 0) = ⟨0, 0, 0⟩
means this is not a solution (see the last line of Method 11.1.1).

Case 2: λ = −1
If λ = −1, then substituting into equation (11.5) gives us

2x− 8 = −2x⇔ 4x = 8,

i.e. x = 2.
As well, substituting λ = −1 into equation (11.6) gives us

2y − 4 = −2y ⇔ 4y = 4,

i.e. y = 1.
These values substituted into equation (11.8) gives us z = ±

√
5.

Since the cone extends forever up and down in the z direction, we realize
these points (2, 1,±

√
5) are where the distance is minimized and that there

is no maximum. (A mathematical argument: putting y = 0 and x = z satisfy
the constraint; letting x, z →∞ we see d2 →∞.) ■

Note that, in the example, ∇f(2, 1,±
√
5) = ⟨−4,−2,±2

√
5⟩ and

∇g(2, 1,±
√
5) = ⟨4, 2,∓2

√
5⟩ thus illustrating the comment immediately pre-

ceding Method 11.1.1.

164 Constrained GP: Lagrange Multipliers and KKT Conditions

Lagrange multipliers may also be used when there are two constraints:

Method 11.1.3 (The Method of Lagrange Multipliers). If f(x, y, z) has a
relative extremum at (x∗, y∗, z∗) subject to the constraints g(x, y, z) = 0 and
h(x, y, z) = 0 where f , g, and h have continuous first-order partial deriva-
tives, then if ∇g(x∗, y∗, z∗) ̸= 0 and ∇h(x∗, y∗, z∗) ̸= 0, ∇f(x∗, y∗, z∗) =
λ∇g(x∗, y∗, z∗) + µ∇h(x∗, y∗, z∗) for real numbers λ and µ.

Lagrange’s Method does extend beyond two constraints and its general-
ization is the topic of the next section.

11.2 The KKT Conditions

As we saw in the first two sections of Chapter 10, Calculus can be used to find
optimal values of functions. Unfortunately, this is a multi-step process in that
we first find critical points and then must do a little more work to determine if
we have a (local!) maximum or minimum at any of these critical points (and
even more work if we want to address global extreme values). One tool to
check if a critical point is indeed where a function has an extreme value is to
use the First Derivative Test (the single variable version is Theorem 10.1.4).
If a nonlinear programming problem has appropriate constraints (specifically,
satisfy some regularity conditions), the KKT Conditions are essentially a first
derivative test to verify that a solution is indeed optimal. Moreover, as we will
see shortly, the KKT conditions can be used to solve a nonlinear programming
problem that has inequality constraints in a manner that generalizes Lagrange
Multipliers.

The KKT Conditions were introduced in a 1951 paper by Harold W. Kuhn
and Albert W. Tucker [40]. Later is was discovered that William Karush had
developed the conditions in his 1939 Master’s Thesis at the University of
Chicago [38]. These conditions are commonly referred to as the Karush-Kuhn-
Tucker Conditions though some older literature may merely call them the
Kuhn-Tucker (KT) Conditions.

Theorem 11.2.1 (Karush-Kuhn-Tucker (KKT) Conditions). Consider the
following optimization problem:

Maximize: f(x1, . . . , xn) (11.9)

subject to: gi(x1, . . . , xn) ≤ 0 for i = 1, . . . ,m (11.10)

where f, g1, . . . , gm have continuous first derivatives. Define the Lagrangian

L(x1, . . . , xn) := f(x1, . . . , xn)−
m∑
i=1

λigi(x1, . . . , xn)

The KKT Conditions 165

where the λi are real numbers. Then if (x∗
1, . . . , x

∗
n) is a maximizer of f , the

following conditions are satisfied:

∂L

∂xj
=

∂f

∂xj
−

m∑
i=1

λi
∂gi
∂xj

= 0 for j = 1, 2, . . . , n; (11.11)

λi ≥ 0 for i = 1, 2, . . . ,m; (11.12)

λigi = 0 for i = 1, 2, . . . ,m; and (11.13)

gi(x
∗
1, . . . , x

∗
n) ≤ 0 for i = 1, 2, . . . ,m. (11.14)

A few notes are in order. The inequalities in (11.14) are merely satisfying
the constraints. (11.11), (11.12), and (11.13) are the KKT conditions. More
importantly, the statement of the theorem is not quite correct; certain regu-
larity conditions need to be met for the theorem to hold. A proof of Theorem
11.2.1 can be found in [26] as well as a discussion of the conditions on which
the theorem holds. At the time of this writing, Wikipedia’s entry lists many
of the regularity conditions. Both sources also discuss sufficient conditions for
Theorem 11.2.1.

Example 11.2.2. We will use the KKT conditions to find the circle centered
at (3, 5) of smallest radius that intersects the region given by y ≤ 2 and x ≤ 1.
Note that since the radius of a circle nonnegative, we may minimize r2. Thus,
we seek to solve

Maximize: f(x, y) = −r2 = −(x− 3)2 − (y − 5)2 (11.15)

subject to: g1(x, y) = y − 2 ≤ 0 (11.16)

g2(x, y) = x− 1 ≤ 0 (11.17)

Solution. First we have

L(x, y) = −(x− 3)2 − (y − 5)2 − λ1(y − 2)− λ2(x− 1).

Assuming some regularity condition is meet, any maximizer will satisfy the
KKT conditions

∂L

∂x
= −2(x− 3)− λ2 = 0, (11.18)

∂L

∂y
= −2(y − 5)− λ1 = 0, (11.19)

λ1(y − 2) = 0, (11.20)

λ2(x− 1) = 0, (11.21)

λ1, λ2 ≥ 0.

Equation 11.18 gives λ2 = 6 − 2x. Substituting into (11.21) leads to x = 3
or 1, but as x = 3 is not feasible, x = 1. Similar work with the other pair of
equations yields y = 5 or 2 giving that y = 2. Note that these solutions are

166 Constrained GP: Lagrange Multipliers and KKT Conditions

x = 1

y = 2

FIGURE 11.1
Minimizing the radius in Example 11.2.2.

independent, thus x = 1 or y = 2. The first circle to reach x = 1 has radius
2, which is not large enough to satisfy the constraint y ≤ 2, thus the first
circle to reach y = 2 is the circle with center (3, 5) having the smallest radius
and intersecting both half-planes (this circle has radius 3). This example is
represented in Figure 11.1. ■

11.3 Exercises

Exercise 11.1. Use the Method of Lagrange Multipliers (Method 11.1.1) to
find the point(s) on the circle x2 + y2 = 8 whose coordinates have the largest
sum as well as any point(s) that have the smallest sum (i.e. find the maximum
and the minimum of f(x, y) = x+ y over the boundary of the circle).

Exercise 11.2. Explain why the Method of Lagrange Multipliers fails to find
extreme values of f(x, y) = xy2 subject to x + y = 0. Compare this with
Exercise 10.11.

Exercises 167

Exercise 11.3. Use the Method of Lagrange Multipliers to find the point on
f(x, y, z) = xyz that is closest to the origin.

Exercise 11.4. (From [57]) Use the Method of Lagrange Multipliers to find
the point(s) in R3 closest to the origin that lie on both the cylinder x2+y2 = 4
and the plane x− 3y+2z = 6 (thus the constraints are g(z, y, z) = x2+ y2− 4
and h(z, y, z) = x− 3y + 2z − 6).

Exercise 11.5. (From [57]) Use the Method of Lagrange Multipliers to find
the point(s) in R3 closest to the origin that lie on both the cone z2 = x2 + y2

and the plane x + 2y = 6 (thus the constraints are g(z, y, z) = x2 + y2 − z2

and h(z, y, z) = x+ 2z − 6).

Exercise 11.6. Use the KKT conditions to find the circle centered at (3, 4) of
smallest radius that intersects the region given by x ≤ 2 and y ≤ 1. Note that
since the radius of a circle nonnegative, it is sufficient to minimize r2. You
may assume any necessary regularity condition is met and you do not have to
justify that your solution is a local or global min.

Exercise 11.7. (From [26]) Use the KKT conditions to solve the following
Geometric Programming problem. You may assume any necessary regularity
condition is met and you do not have to justify that your solution is a local
or global max.

Maximize: f(x1, x2, x3, x4) = −x2
1 + 2x2

2 + 4x2
3 − 3x2

4

subject to: x1 + 3x2 + 4x3 − 2x4 ≤ 0

x1 + x2 + x3 + x4 ≤ 0

4x1 + 3x2 + 2x3 + x4 ≤ 0

[The solution is the point (366,−168,−43,−155).]

Exercise 11.8. (From [26]) Use the KKT conditions to solve the following
Geometric Programming problem. You may assume any necessary regularity
condition is met and you do not have to justify that your solution is a local
or global max.

Maximize: f(x1, x2, x3) = 2x2
1 − x2

2 − 3x2
3

subject to: x1 + 2x2 + x3 ≤ 1

4x1 + 3x2 + 2x3 ≤ 2

[The solution is the point (0, 0, 0).]

12

Optimization Involving Quadratic Forms

12.1 Quadratic Forms

In this chapter we provide a tidy second-order condition for extreme values.
The result is a nice application of Taylor’s Formula (Theorem 9.6.3) involving
quadratic forms.

Definition 12.1.1 (Quadratic Form). A polynomial of the form

a11x1
2+a22x2

2 + · · ·+ annxn
2+2a12x1x2+2a13x1x3 + · · ·+ 2an−1,nxn−1xn

=
n∑

i=1

aiixi
2 +

∑
i<j

2aijxixj (12.1)

is called a quadratic form; that is, it is a homogeneous polynomial where each
term has total degree 2.

It can be shown that every quadratic form has associated a matrix A =
{aij}; in particular that

xTAx = x ·Ax

n∑
i=1

aiixi
2 +

∑
i<j

2aijxixj (12.2)

where A = {aij} and x = [x1, . . . , xn]
T . For example, A =

[
2 3
2 1

]
is the

matrix associated with the quadratic form f(x1, x2) = 2x1
2 + x2

2 + 5x1x2;
that is

xTAx=

[
x1

x2

]T [
2 3
2 1

] [
x1

x2

]
=

[
2x1 + 2x2

3x1 + x2

]T [
x1

x2

]
=2x2

1+5x1x2+x2
2=f(x1, x2).

(12.3)
From this example it is easy to see that a quadratic polynomial in two

variables factors very nicely, namely

ax2
1 + 2bx1x2 + cx2

2 =

[
x1

x2

]T [
a b1
b2 c

] [
x1

x2

]
(12.4)

where b1 + b2 = 2b. Much is known of factoring quadratic forms of more than
two variables and matrix factorization is considered in Chapter 5.

DOI: 10.1201/9780367425517-12 168

https://doi.org/10.1201/9780367425517-12

Definite and Semidefinite Matrices and Optimization 169

There are many wonderful properties to explore regarding quadratic forms,
but we focus our attention on those immediately relevant to Optimization.
First, some necessary definitions:

Definition 12.1.2. Consider a real, symmetric matrix A and its quadratic
form xTAx = x ·Ax. Then A and its quadratic form are said to be

• positive definite if x ·Ax > 0 for all x ̸= 0,
• positive semidefinite if x ·Ax ≥ 0 for all x,
• negative definite if x ·Ax < 0 for all x ̸= 0,
• negative semidefinite if x ·Ax ≤ 0 for all x, and
• indefinite if x ·Ax takes on both positive and negative values.

Note that these definitions specifically involve the quadratic form but are
extended to the associated matrix A; that is we say A is positive semidefinite
if its associated quadratic form x ·Ax is positive semidefinite, etc.

12.2 Definite and Semidefinite Matrices and
Optimization

As for why the definitions from the previous section are important in Opti-
mization, suppose x = (x1, x2, . . . , xn) and x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) are distinct

points in Rn. Suppose further that f(x) is a function of n variables with con-
tinuous first and second partial derivatives in Rn. Then by the Multivariable
Taylor’s Formula (Theorem 9.6.3), there exists some c such that

f(x) = f(x∗) +∇f(x∗) · (x− x∗) +
1

2
(x− x∗) ·Hf(c)(x− x∗). (12.5)

Now if x∗ is a critical point of f(x), (12.5) becomes

f(x) = f(x∗) + 0 +
1

2
(x− x∗) ·Hf(c)(x− x∗) (12.6)

and if Hf(c) is positive definite (note that the Hessian is always symmetric
via Clairaut’s Theorem), we have

f(x) = f(x∗) + something positive, (12.7)

thus
f(x∗) < f(x)

for all x ̸= x∗ establishing x∗ as a strict global maximizer of f(x). We have
therefore established the first part of the following theorem (the other parts
are proven by the same technique and are Exercise 12.4).

170 Optimization Involving Quadratic Forms

Theorem 12.2.1. Suppose that x∗ is a critical point of f(x) having continu-
ous first and second partial derivatives on Rn and that Hf(x) is the Hessian
of f(x). Then x∗ is a

• strict global minimizer for f(x) if Hf(x) is positive definite,
• global minimizer for f(x) if Hf(x) is positive semidefinite,
• strict global maximizer for f(x) if Hf(x) is negative definite,
• global maximizer for f(x) if Hf(x) is negative semidefinite, and
• saddle point of f(x) if Hf(x) is indefinite.

Our earlier statements do not prove the final part of the previous theorem
regarding when a critical point of f(x) is a saddle point. This result is stated
and proven as Theorem 1.3.7 in [43].

12.3 The Role of Eigenvalues in Optimization

Determining the definiteness of a symmetric matrix can be quite daunting (see
the discussion on pages 13–19 in [43], for example). Fortunately, the magic of
eigenvalues can save us from some heavy work (a review of eigenvalues is
presented in Section 4.4.1).

Theorem 12.3.1. For a symmetric real matrix A,

• A is positive definite if and only if all the eigenvalues of A are positive,
• A is positive semidefinite if and only if all the eigenvalues of A are non-
negative,
• A is negative definite if and only if all the eigenvalues of A are negative,
• A is negative semidefinite if and only if all the eigenvalues of A are non-
positive, and
• A is indefinite if and only if A has both positive and negative eigenvalues.

A proof of this theorem can be found on pages 29–30 in [43].
We will not consider all the known ways to check the definiteness of a

symmetric matrix, but will include the following easily established result:

Theorem 12.3.2. The diagonal n × n matrix


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 . . . dn

 has its

diagonal entries as its eigenvalues.

By expansion by minors (Theorem 4.3.18),

The Role of Eigenvalues in Optimization 171

Proof.

0=det



d1 − λ1 0 · · · 0

0 d2 − λ2 · · · 0
...

...
. . .

...
0 0 . . . dn − λn


=(d1−λ1)(d2−λ2) · · · (dn−λn),

yielding the result.

Example 12.3.3. Find all extreme values and saddle points of

f(x, y, z) = x2 + y2 + z2 − 6yz.

Solution. We have

∂f

∂x
= 2x (12.8)

∂f

∂y
= 2y − 6z (12.9)

∂f

∂z
= 2z − 6y (12.10)

which leads to (0, 0, 0) as the only critical point.
We have

Hf =

2 0 0
0 2 −6
0 −6 2

 (12.11)

and obtain the its determinants by

0 = det

2− λ 0 0
0 2− λ −6
0 −6 2− λ

 = (2− λ) det

([
2− λ −6
−6 2− λ

])
(12.12)

= (2− λ)
[
(2− λ)2 − 36

]
(12.13)

= (2− λ)(λ− 8)(λ+ 4) (12.14)

which gives eigenvalues λ = 2, −4, and 8.
Thus by Theorems 12.2.1 and 12.3.1, (0, 0, 0) is a saddle point of

f(x, y, z) = x2 + y2 + z2 − 6yz. ■

Note that this technique works even if the objective function is not a
quadratic form.

Example 12.3.4. Find all extreme values and saddle points of

f(x, y, z) = x2 + y4 + z2 − 2x+ 2z + 1.

172 Optimization Involving Quadratic Forms

Solution. We have

∂f

∂x
= 2x− 2 (12.15)

∂f

∂y
= 4y3 (12.16)

∂f

∂z
= 2z + 2 (12.17)

which leads to (1, 0,−1) as the only critical point.
We have

Hf =

2 0 0
0 12y2 0
0 0 2

 (12.18)

which, by Theorem 12.3.2, has all positive eigenvalues. Thus by Theorems
12.2.1 and 12.3.1, (1, 0,−1) is a strict global minimizer for f(x, y, z) = x2 +
y4 + z2 − 2x+ 2z + 2. ■

We will close this chapter by stating a beautiful result regarding optimizing
a quadratic form over inputs constrained to be unit vectors.

Theorem 12.3.5. Suppose the matrix A associated with the quadratic form
xTAx has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then for all x satisfying ||x|| = 1,

λ1 ≥ f(x) ≥ λn

where

• λ1 = f(x1) with x1 the unit eigenvector corresponding to λ1,

• λn = f(xn) where xn is the unit eigenvector corresponding to λn,

• and || · || is the Euclidean norm.

Note that Theorem 12.3.5 tells us that if we wish to find the maximum and
minimum values of a quadratic the form f(x) = xTAx subject to ||x|| = 1,
then the maximum of f(x) is the largest eigenvalue λ1 of A and it occurs when
x is a unit eigenvector corresponding to λ1 and the minimum is the smallest
eigenvalue λn of A also occurring when x is an eigenvector corresponding to
λn.

Example 12.3.6. Find the largest rectangle that can be inscribed in the circle
x2 + y2 = 1.

Solution. We wish to maximize f(x, y) = xy subject to x2 + y2 = 1. From
(12.4),

xy =

[
x
y

]T [
0 1/2
1/2 0

] [
x
y

]
. (12.19)

Keywords 173

From Section 4.4.1, to find the eigenvalues of A =

[
0 1/2
1/2 0

]
,

det(A− λI) = det

([
−λ 1/2
1/2 −λ

])
= λ2 − 1/4 = 0, (12.20)

thus A has eigenvalues λ = ±1/2. Hence by Theorem 12.3.5, max f(x, y) =
1/2.

Without showing the details, we mention that the eigenvector associated
with the eigenvalue λ = 1/2 is [

√
2/2,
√
2/2]T which gives us that, subject

to the constraint x2 + y2 = 1, max f(x, y) = xy is 1/2 which occurs when
x =
√
2/2 and x =

√
2/2. ■

12.4 Keywords

quadratic form, positive or negative definite matrix, positive or negative
semidefinite matrix.

12.5 Exercises

Exercise 12.1. Classify each of the following matrices according to whether
they are positive or negative definite or semidefinite or indefinite.

a.

1 0 0
0 2 0
0 0 3


b.

1 0 0
0 −2 0
0 0 3


c.

−1 0 0
0 −2 0
0 0 −3


d.

1 0 0
0 3 2
0 2 4


e.

1 0 2
0 3 0
2 0 4



174 Optimization Involving Quadratic Forms

f.

2 0 2
0 −5 0
2 0 −2


g.

3 1 2
1 5 3
2 3 7


Exercise 12.2. Write the quadratic form associated with each matrix in
Exercise 12.1.

Exercise 12.3. Using the techniques from this chapter, find the extreme val-
ues and saddle points of the following functions:

a. f(x, y, z) = x2 + y2 + z2 + 4xz

b. f(x, y) = x8 + 16xy + y4

c. f(x, y, z) = 4x2 + 2y2 + 2z2 − 4xy − 2yz − 2z + 1

d. f(x, y, z) = x2 + y2ex + z4

Exercise 12.4. Prove the last four parts of Theorem 12.2.1.

Exercise 12.5. Given a collection of n data points {(x1, y1), . . . , (xn, yn)}, the
goal of linear regression is to find values m and b such that the line y = mx+b
best fits the data. One way to do determine the best fit of a line is to minimize
how far the points are from a potential line by minimizing the square of the
distance each data point is from the line; that is:

Minimize S(m, b) =

n∑
i=1

(yi −mxi − b)2. (12.21)

Use the techniques of this chapter to show that the values of m and b that
minimize S(m, b) are

m =

nxy −
n∑

i=1

xiyi

n(x)2 −
n∑

i=1

x2
i

and
b = y −mx

where x = x1+···+xn

n and y = y1+···+yn

n .

13

Iterative Methods

13.1 Newton’s Method for Optimization

We saw in Section 9.3 an iterative process that helped us approximate the
zeros of a function. We can also mimic this idea to obtain approximations of
extreme points of a function.

13.1.1 Single-Variable Newton’s Method for Optimization

In the case of finding zeros of a function f(x), Newton’s method approximates
f(x) by a linear function (the tangent line at a nearby point) then finds
the zero of this linear function. This time, the idea of Newton’s Method for
function optimization is to approximate a function f(x) by its 2nd order Taylor
polynomial T2(x) [see Section 9.6.1], then find a critical point of T2(x) and
iterate with the hope of finding an approximation of a critical point of f(x).
That is, if f(x) is twice differentiable, then near x0 = a

f(x) ≈ T2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 (13.1)

and
0 = f ′(x) ≈ T2

′(x) = f ′(a) + f ′′(a)(x− a) (13.2)

Therefore

x ≈ a− f ′(a)

f ′′(a)
. (13.3)

So we have

Method 13.1.1 (Single-Variable Newton’s Method for Optimization). Let
f(x) be a twice differentiable function and x0 a starting point. Then an ap-
proximation of a critical number of f(x) is obtained by the iteration

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

Example 13.1.2. Use Newton’s Method for Optimization to find critical
points of f(x) = 1

7x
7 − 3x5 + 22x3 − 80x with starting points x0 = 1, 2, 3.

DOI: 10.1201/9780367425517-13 175

https://doi.org/10.1201/9780367425517-13

176 Iterative Methods

TABLE 13.1
Obtaining Critical Numbers via Newton’s Method in Example 13.1.2 (Trun-
cated)

n xn xn xn

0 1 2 3
1 1.358974358974 2.333333333333 2.880341880341
2 1.411478349258 2.233620026571 2.835093055278
3 1.414205695493 2.236069384087 2.828557057505
4 1.414213562307 2.236067977500 2.828427175454
5 1.414213562373 2.236067977499 2.828427124746
6 1.414213562373 2.236067977499 2.828427124746
7 1.414213562373 2.236067977499 2.828427124746
...

...
...

...√
2

√
5

√
8

Solution. Here we have

f ′(x) = x6 − 15x4 + 66x2 − 80 (13.4)

and
f ′′(x) = 6x5 − 60x3 + 132x. (13.5)

The iterative values for the starting points are given in Table 13.1. Some
calculus and algebra will show that f(x) does have as its positive critical
points x =

√
2,
√
5,
√
8. The graph of the function in Example 13.1.2 appears

in figure 13.1. ■

As in Newton’s Method for finding zeros, this technique will fail if f ′′(a) =
0 or is too close to 0.

13.1.2 Multivariable Newton’s Method for Optimization

The multivariable version of Newton’s Method for Optimization is as follows:

Method 13.1.3 (Multivariable Newton’s Method for Optimization). Let f :
Rn → R be a twice differentiable function and x0 a starting point. Then an
approximation of a critical number of f(x) = f(⟨x1, . . . , xn⟩) is obtained by
the iteration

xk+1 = xk −
∇f(xn)

Hf(xn)
= xk −∇f(xn)[Hf(xn)]

−1 (13.6)

where ∇f is the gradient of f , [Hf]−1 is the inverse1 of the Hessian of f , and
the product is matrix multiplication.

1Of course, we are abusing the notation by writing division involving a matrix; but this

Newton’s Method for Optimization 177

FIGURE 13.1
f(x) = 1

7x
7 − 3x5 + 22x3 − 80x in Example 13.1.2.

We illustrate the technique with a two-variable example.

Example 13.1.4. Use Newton’s Method to find a critical number of f(x, y) =
x2 + y2 − 2x − 4y + 4 using ⟨0, 0⟩ as a starting point. A graph of f(x, y) is
given in figure 13.2.

Solution. We have
∇f(x, y) = ⟨2x− 2, 2y − 4⟩ (13.7)

and

Hf(x, y) =

[
2 0
0 2

]
(13.8)

giving

[Hf(x, y)]−1 =
1

4

[
2 0
0 2

]
=

[
1
2 0
0 1

2

]
. (13.9)

Thus to iterate we use

⟨xn+1, yn+1⟩ = ⟨xn, yn⟩ − ⟨2x− 2, 2y − 4⟩
[
1
2 0
0 1

2

]
(13.10)

= ⟨xn, yn⟩ − ⟨xn − 1, yn − 2⟩ (13.11)

= ⟨1, 2⟩.

So we obtain a solution without using values for xn and yn. And as f(x, y) =
x2 + y2 − 2x − 4y + 4 = (x − 1)2 + (y − 2)2, it is easy to see from Calculus
that ⟨1, 2⟩ is the location of the minimum value. ■

statement looks like the single variable version of Newton’s Method for finding critical points
making it easier for students to believe and remember.

178 Iterative Methods

FIGURE 13.2
f(x, y) = x2 + y2 − 2x− 4y + 4 in Example 13.1.4.

Something interesting has happened in Example 13.1.4: the starting point
was irrelevant and we have converged to the solution in one iteration. This
illustrates

Theorem 13.1.5. If f(x) is linear or quadratic and the Hessian is invertible,
then Newton’s Method for Optimization will converge to a critical number after
one iteration regardless of the starting point.

Proof. If f(x) is quadratic, then it can be written in the form

f(x) =
1

2
x ·Ax+ b · x+ c =

1

2
xTAx+ b · x+ c. (13.12)

Thus ∇f(x) = Ax+b and Hf(x) = A. Suppose an extrema of f(x) occurs at
x⋆, then x⋆ is a critical point of f(x) and by the higher dimensional version
of Theorem 10.2.5,

0 = ∇f(x⋆) = Ax⋆ + b (13.13)

and Ax⋆ = −b. Then for an arbitrary starting point x0 Newton’s Method for
Optimization gives

x1 = x0 −∇f(x0)[Hf(x0)]
−1 (13.14)

= x0 − (Ax0 + b)A−1 (13.15)

= x0 − (Ax0 +−Ax⋆)A
−1 (13.16)

= x0 − (x0 +−x⋆) (13.17)

= x⋆. (13.18)

We obtain the proof for the case when f(x) is linear by letting A be the zero
matrix.

We now illustrate Newton’s Method for Optimization with a little more
difficult example.

Newton’s Method for Optimization 179

FIGURE 13.3
f(x, y) = e−(x2+y2) in Example 13.1.6.

Example 13.1.6. Find a critical point of f(x, y) = e−(x2+y2) using Newton’s
Method for Optimization with (1, 1) as a starting point.

Solution. Here we have

∇f(x, y) = ⟨−2xe−(x2+y2),−2ye−(x2+y2)⟩ (13.19)

and

Hf(x, y) =

[
(4x2 − 2)e−(x2+y2) 4xye−(x2+y2)

4xye−(x2+y2) (4y2 − 2)e−(x2+y2)

]
. (13.20)

So
∇f(1, 1) = ⟨−2e−2,−2e−2⟩ (13.21)

and

[Hf(1, 1)]−1 =

[
2e−2 4e−2

4e−2 2e−2

]−1

=
−1

12e−4

[
2e−2 −4e−2

−4e−2 2e−2

]
=

[
− e2

6
e2

3
e2

3 − e2

6

]
.

(13.22)
So

x1 = ⟨1, 1⟩ −
〈
−2
e2

,
−2
e2

〉
·

[
−e2

6
e2

3
e2

3
−e2

6

]
= ⟨1, 1⟩ −

〈
−1

3
,−1

3

〉
=

〈
4

3
,
4

3

〉
.

(13.23)
We have worked too hard here, as some algebra gives

(xk+1, yk+1) = (xk, yk) +
1

2x2
k + 2y2k − 1

(xk, yk). (13.24)

180 Iterative Methods

TABLE 13.2
Obtaining Critical Numbers via Newton’s Method in Example 13.1.6
(Truncated)

Iteration Starting Point (x0, y0) Starting Point (x0, y0)
n xn = yn xn = yn
0 1.000000000000 0.3333333333333
1 1.333333333333 −0.2666666666666
2 1.551515151515 0.1060041407867
3 1.731321808277 −0.0049888591355
4 1.888859336357 0.0000004967146
5 2.031187480116 0.0000000000000
6 2.162207402112 0.0000000000000
7 2.284362124161 0.0000000000000
8 2.399308754889 0.0000000000000
9 2.508235897244 0.0000000000000
10 2.612032173325 0.0000000000000
11 2.711383557644 0.0000000000000
12 2.806833289165 0.0000000000000
13 2.898820641006 0.0000000000000
14 2.987707043542 0.0000000000000
15 3.073794283751 0.0000000000000
16 3.157337545150 0.0000000000000
17 3.238554977370 0.0000000000000
18 3.317634865661 0.0000000000000
19 3.394741100051 0.0000000000000
20 3.470017414222 0.0000000000000
...

...
...

The iterations of this example with starting point (1, 1) are given in the second
column of Table 13.2. Note that it appears the values are diverging, so (1, 1)
was an unfortunate choice for a starting point as the curve is too flat at this
point. The third column uses (13 ,

1
3) as a starting point and with this we do

converge to the actual critical point. ■

As seen in this example and as before with the original Newton’s Method,
we do have concerns with good and bad starting points, convergence, and rates
of convergence. This are addressed in any good Numerical Analysis textbook.

Example 13.1.7. Use Newton’s Method for Optimization to find the mini-
mum of f(x, y) = x2 + y2 + 2xy.

Solution. By Theorem 13.1.5, we can hopes for this approach in that we may
get our solution in one iteration regardless of the starting point. We have

Steepest Descent (or Gradient Descent) 181

∇f(x, y) = ⟨2x+ 2y, 2y + 2x⟩ and

Hf(x, y) =

[
2 2
2 2

]
.

Unfortunately det (Hf(x, y)) = 0, thus by the Fundamental Theorem of In-
vertible Matrices (Theorem 4.3.54), Hf(x, y) is not invertible. This does not
mean that there is no solution; what it means is that Newton’s Method does
not work and we have to try something else. ■

13.2 Steepest Descent (or Gradient Descent)

Another technique for minimizing a nonlinear function is the method of Steep-
est Descent which is also known as Gradient Descent (be careful: there is a
technique for approximating integrals which is also called “Steepest Descent”).
This method works for any function f(x) that has continuous first partial
derivatives in Rn.

Algorithm 13.2.1 Gradient Descent for Nonlinear Programming.

Input: A nonlinear programming problem.
1: To minimize a nonlinear function f(x), choose a starting point x0 from

the domain of f(x).
2: Form a sequence {x0,x1,x2,x3, . . . } using the recurrence
3: loop
4: xn+1 = xn − λn∇f(xn)
5: where λn is the value of λn that minimizes ϕn(λn) = f(xn−λn∇f(xn))

with λn ≥ 0.
6: end loop

Output: Under the right conditions, the {x0,x1,x2,x3, . . . } converge to a
point x⋆ that is a minimizer of f(x).

Note the λn is the step size for each iteration. The method has us walk
downhill in the direction of the steepest descent until that direction takes us
downhill no more (mathematically, we are minimizing f(x) in the direction of
the steepest descent). A nice way to consider the idea of steepest decent is to
consider going for a hike in the foothills of Scotland. Let us say we park our
car at the lowest point in the foothills and then begin our walk. After some
time on our hike the fog rolls in and visibility is zero; that is, we cannot see
anything at all. A good strategy would be to feel at our feet, find the biggest
drop, then walk as far as we can in that direction. We then feel at our feet for
the next biggest drop and repeat the process.

Example 13.2.1. Use Steepest Descent to minimize the function in Example
13.1.4 using (0, 0) as a starting point.

182 Iterative Methods

Solution. x0 = (0, 0) and ∇f((x, y)) = (2x − 2, 2y − 4). Hence ∇f((0, 0)) =
(−2,−4) and we must minimize

ϕ0(λ0) = f(2λ0, 4λ0) (13.25)

= 4λ2
0 + 16λ2

0 − 4λ0 − 16λ0 + 4 (13.26)

= 4− 20λ0 + 20λ2
0. (13.27)

To minimize ϕ0(λ0), note ϕ′
0(λ0) = −20 + 40λ0 hence ϕ0(λ0) has λ0 = 1

2 as
a critical point. The second derivative test verifies ϕ0(λ0) has a minimum at
λ0 = 1

2 as ϕ′′
0(

1
2) = 40 > 0. Thus

x1 = x0 −
1

2
∇f(x0) (13.28)

= (0, 0)− 1

2
(−2,−4) (13.29)

= (1, 2). (13.30)

For the second iteration, x1 = (1, 2) hence ∇f((1, 2)) = (0, 0) and regard-
less of the step size, the process will not move from (1, 2) thus we have reached
the minimizer in one iteration. ■

This technique is not without its concerns. We will consider them after the
next example.

Example 13.2.2. Compute the first three terms of the Steepest Descent se-
quence (i.e. perform three iterations) for

f(x, y) = 4x2 − 4xy + 2y2

with initial point (2, 3).

Solution:

x0 = (2, 3) and ∇f((x, y)) = (8x−4y,−4x+4y). Hence ∇f((2, 3)) = (4, 4)
and we must minimize

ϕ0(λ0) = f(2− 4λ0, 3− 4λ0) (13.31)

= (2− 4λ0)
2 − 4(2− 4λ0)(3− 4λ0) + 2(3− 4λ0)

2 (13.32)

= 10− 32λ0 + 32λ2
0. (13.33)

To minimize ϕ0(λ0), note ϕ′
0(λ0) = −32 + 64λ0 hence ϕ0(λ0) has λ0 = 1

2 as
a critical point. The second derivative test verifies ϕ0(λ0) has a minimum at
λ0 = 1

2 as ϕ′′
0(

1
2) = 64 > 0. Thus

x1 = x0 −
1

2
∇f(x0) (13.34)

= (2, 3)− 1

2
(4, 4) (13.35)

= (0, 1). (13.36)

Steepest Descent (or Gradient Descent) 183

For the second iteration, x1 = (0, 1) hence ∇f((0, 1)) = (−4, 4) and we
must minimize

ϕ1(λ1) = f(4λ1, 1− 4λ1) (13.37)

= 4(4λ1)
2 − 4(4λ1)(1− 4λ1) + 2(1− 4λ1)

2 (13.38)

= 2− 32λ1 + 160λ2
1. (13.39)

To minimize ϕ1(λ1), note ϕ′
1(λ1) = −32+ 320λ1 hence ϕ1(λ1) has λ1 = 1

10 as
a critical point. The second derivative test verifies ϕ1(λ1) has a minimum at
λ1 = 1

10 as ϕ′′
1(

1
10) = 320 > 0. Thus

x2 = x1 −
1

10
∇f(x1) (13.40)

= (0, 1)− 1

10
(−4, 4) (13.41)

=

(
2

5
,
3

5

)
. (13.42)

For the third iteration, x2 = (25 ,
3
5) hence ∇f((

2
5 ,

3
5)) = (45 ,

4
5) and we must

minimize

ϕ2(λ2) = f

(
2

5
− 4

5
λ2,

3

5
− 4

5
λ2

)
(13.43)

= 4

(
2

5
− 4

5
λ2

)2

− 4

(
2

5
− 4

5
λ2

)(
3

5
− 4

5
λ2

)
+ 2

(
3

5
− 4

5
λ2

)2

(13.44)

=
1

25
(10− 32λ2 + 32λ2

2). (13.45)

To minimize ϕ2(λ2), note ϕ
′
2(λ2) = − 32

25λ2+
64
25λ2 hence ϕ2(λ2) has λ2 = 1

2 as
a critical point. The second derivative test verifies ϕ2(λ2) has a minimum at
λ2 = 1

2 as ϕ′′
2(

1
2) =

64
25 > 0. Thus

x3 = x2 −
1

2
∇f(x2) (13.46)

=

(
2

5
,
3

5

)
− 1

2

(
2

5
,
2

5

)
(13.47)

=

(
0,

1

5

)
. (13.48)

For the next iteration,

ϕ3(λ3) =
1

25
(160λ3 − 32λ3 + 2λ2

3) (13.49)

which has a minimum when λ3 = 1
10 giving x4 =

(
2
25 ,−

3
5

)
.

184 Iterative Methods

TABLE 13.3
Obtaining Critical Numbers via Steepest Descent in Example 13.2.2 (Trun-
cated)

n xn yn λn

0 2.000000 3.000000 0.500000
1 0.000000 1.000000 0.100000
2 0.400000 0.600000 0.500000
3 0.000000 0.200000 0.100000
4 0.080000 −0.600000 0.445205
...

...
...

The iterations in Example 13.2.2 are given in Table 13.3.
Notes:

1. It is not difficult to see that the minimum value of f(x, y) occurs at (0, 0)
[we could verify this quickly using methods from Calc 3].

2. Using Solver in Microsoft’s Excel gives a solution of min f = 2.1027×10−13

which occurs at (−0.0000002,−0.00000046) [If you use Solver to answer
this, remember to use “GRG Nonlinear” and uncheck the “Make Un-
constrained Variables Non-Negative” box]. The message included with
Solver’s solution is “Solver has converged to the current solution. All Con-
straints are satisfied. Solver has performed 5 iterations for which the ob-
jective did not move significantly. Try a smaller convergence setting, or a
different starting point”. Solver has performed a modified version of what
we did above for 5 iterations, noticed that f was not changing much, then
quit. We can have Solver do more iterations from this starting point by
changing the convergence tolerance: in Solver, go to OPTIONS then GRG
NONLINEAR then change CONVERGENCE to something smaller than
the default 0.0001.

3. The previous note points out a disadvantage of Steepest Descent : if the
function starts to level off, the method will converge very slowly.

4. It would be great fun to discuss the mathematics of what is going on here
(why this works, that at each iteration we move orthogonally from the
previous, convergence, etc.). If interested, please referene a good advanced
Numerical Analysis text.

13.2.1 Generalized Reduced Gradient

Computationally, finding derivatives is expensive, yet alone that we need also
find a zero. To make matters worse, we are minimizing a second function to
find the minimum of the objective function. This is great in theory, but com-
putationally insane, so we instead do something much more reasonable and fix

Additional Geometric Programming Techniques 185

the step size. This (and a few more tricks) are what is done in the Generalized
Reduced Gradient algorithm used in most software including Solver.

13.3 Additional Geometric Programming Techniques

Additional techniques which we will not consider in this text include:

• Least Squares Optimization and Minimum Norms,

• Secant Methods, and

• penalty methods.

13.4 Exercises

Exercise 13.1. Use Newton’s Method for Optimization to find the extreme
values of x3 − x+ 1.

Exercise 13.2. Do the first two iterations of Steepest Descent to minimize
f(x, y) = 2x2 + y2 − 2xy with a starting point of (2, 3).

Exercise 13.3. Do the first two iterations of Steepest Descent to minimize
g(x, y) = x2 + y2 − 2x− 2y − xy with a starting point of (0, 0). Comment on
what happens here.

Exercise 13.4. Give an example for which the proof of Theorem 9.1.5 would
not apply. (Hint: is [Hf(xo)]

−1 always invertible?)

Exercise 13.5. Newton’s Method for Optimization requires finding the in-
verse of the Hessian. Consider a function of two variables f(x, y). In terms
of the second partial derivatives (fxx, fyy, and fxy and/or fyx), under what
conditions is the Hessian not invertible?

Exercise 13.6. Consider an arbitrary, simple graph G on n vertices with m
edges (as we will see in Chapter 21, each edge is determined by two vertices and
no more than one edge can exist between a given pair of vertices). Consider
assigning each vertex the color red or blue and then once the vertices are
colored, color the existing edges by the following scheme:

• if both of the endpoints of an edge are red, color the edge red,

• if both of the endpoints of an edge are blue, color the edge blue, and

• if one endpoint is red and the other blue, color the edge purple.

186 Iterative Methods

Question: For an arbitrary graph, what vertex-coloring scheme will lead to
the most purple edges? (If you can answer this, engineers, physicists, computer
scientists, and discrete mathematicians will be very interested. This is the
open “Maximum Cut” problem and is known to be NP-Hard and has many
applications.)

One approach to solving this is to introduce a decision variable xi for each
vertex vi and put

xi =

{
0 if vi is to be colored red or

1 if vi is to be colored blue.
(13.50)

We then answer the question by maximizing the m-term function

Maximize f(x1, . . . , xn) =
∑

vivj∈E(G)

(xi − xj)
2. (13.51)

As this is quadratic, we should run to Newton’s Method – which would converge
to the critical point in one iteration regardless of the starting point.

Explain why Newton’s Method fails for this important open problem.

14

Derivative-Free Methods

14.1 The Arithmetic Mean-Geometric Mean Inequality
(AGM)

Our approach to solving some nonlinear optimization problems in this sec-
tion will be through what is known as the Arithmetic Mean-Geometric Mean
Inequality.

We can derive the inequality in the two variable case as follows:

0 ≤ (
√
x1 −

√
x2)

2 = x1 − 2
√
x1
√
x2 + x2 (14.1)

and note that since we are taking square roots we necessarily have x1, x2 ≥ 0
(as we will see shortly, the generalized AGM requires the variables to be
positive). A little bit of algebra yields

√
x1x2 ≤

x1 + x2

2
. (14.2)

The left hand side of (14.2) is the geometric mean of x1 and x2 whereas
the right hand side of (14.2) is the arithmetic mean of x1 and x2. A close
inspection of (14.1) reveals that we have equality in the AGM exactly when
x1 = x2 (this is the only way to get the right side to be 0 in this equation).
It will turn out this fact will be incredibly useful when we use the AGM to
solve optimization problems.

In general,

Theorem 14.1.1 (The Arithmetic Mean-Geometric Mean Inequality
(AGM)). If x1, . . . , xn are positive real numbers and if δ1, . . . , δn are also
positive real numbers such that δ1 + · · ·+ δn = 1, then

n∏
i=1

xi
δi ≤

n∑
i=1

δixi

with equality1 if and only if x1 = x2 = · · · = xn =
∑n

i=1 δixi.

1As we will see, this is where the magic happens with using the AGM to solve opti-
mization questions; we get equality, i.e. reach our bound, exactly when the things that we
are averaging are the same. I tell my students that if they wanot to sound smart during a
math talk, whenever there is an inequality they should ask: “Is the bound tight? If so, does
anything magical happen when there is equality?”

DOI: 10.1201/9780367425517-14 187

https://doi.org/10.1201/9780367425517-14

188 Derivative-Free Methods

This version of the AGM is not hard to prove but involves the idea of
convexity and will be proven in Section 18.5.

We illustrate the method by considering the following problem:

Example 14.1.2. A customer has requested an order of boxes from the
Springfield Box Company. The order asks for boxes to have a volume of 27 cu-
bic feet but has no specific requirement on the dimensions of the box. Vincenzo
Natali is responsible for fulfilling this request, but would like some expert anal-
ysis on designing the boxes. In particular, Mr. Natali would like to know what
dimensions his company should make the boxes so that they satisfy the cus-
tomer’s request for the desired volume but minimize the amount of cardboard
used.

We will assume the cardboard has a given thickness and we will put x =
the length, y = the width, and z = the height of the manufactured box. The
problem is then modeled as

Minimize Surface Area: S(x, yz) = 2xy + 2xz + 2yz subject to V = xyz = 27
(14.3)

where clearly x, y, z > 0.
Solution 1: (Using partial derivatives.)

We first solve the constraint function for z and obtain

z =
27

xy
. (14.4)

Substituting this into the objective function gives us the problem:

Minimize S(x, y) = 2xy + 2x · 27
xy

+ 2y · 27
xy

= 2xy + 54y−1 + 54x−1. (14.5)

So

∂S

∂x
= 2y − 54

x2
and (14.6)

∂S

∂y
= 2x− 54

y2
. (14.7)

Thus we have critical points when

2yx2 − 54 = 0 and (14.8)

2xy2 − 54 = 0. (14.9)

Therefore the left-hand sides are the same which gives us 2yx2 = 2xy2 and
some algebra yields x = y. Substituting into equation (14.8)

2y3 − 54 = 0 (14.10)

showing

y = 3. (14.11)

The Arithmetic Mean-Geometric Mean Inequality (AGM) 189

Hence x = 3 and from V = 27 we also see that z = 3. Thus the Springfield
Box Company can satisfy the customer’s request using the least amount of
cardboard by making a cube with each side 3 feet.

Solution 2: (Using Lagrange multipliers.)
We have ∇S = λ∇V ,

⟨2y + 2z, 2x+ 2z, 2x+ 2y⟩ = λ ⟨yz, xz, xy⟩ , (14.12)

thus

2y + 2z = λyz (14.13)

2x+ 2z = λxz (14.14)

2x+ 2y = λxy (14.15)

xyz = 27 (14.16)

Thus

λ =
2y + 2z

yz
=

2x+ 2z

xz
=

2x+ 2y

xy
(14.17)

so, by symmetry, x = y = z. Since xyz = 27, we obtain x = y = z = 3.
The previous two solution techniques illustrate an important concept when

solving optimization questions. The method of LaGrange Multipliers is built
to include the constraint in its approach to answering the question. As calculus
techniques are not engineered this way, we must incorporate the constraint(s)
in some way.

Highlight 14.1.3. If a geometric programming solution technique does not
consider any stated constraints (as in using derivative tests or Newton’s
Method), the constraints are to be incorporated into the problem by using them
to eliminate a variable in the objective function before the technique is applied.

Solution 3: (Using the AGM inequality.)

SA = S(x, y, z) = 2xy + 2xz + 2yz (14.18)

= 2 · 3
(
xy + xz + yz

3

)
(14.19)

= 6
(xy

3
+

xz

3
+

yz

3

)
(14.20)

(by the AGM) ≥ 6(xy)
1
3 · (xz) 1

3 · (yz) 1
3 (14.21)

= 6 · (x2y2z2)
1
3 (14.22)

= 6 · V 2
3 = 54. (14.23)

190 Derivative-Free Methods

So the surface area will be the smallest when we have equality in (14.21). Also
by the AGM, this minimum occurs when the things we are averaging are the
same, namely

xy = xz = yz.

This gives us the system of equations

xy = xz (14.24)

xy = yz (14.25)

xz = yz (14.26)

which easily yields x = y = z and using the volume constraint we see that we
minimize the surface area when x = y = z = 3 feet.

The AGM solution to the situation faced by the Springfield Box Company
is quite beautiful but the beauty does not end there. As is often the case in
Optimization, one minimum is another’s maximum and the problem has a
dual:

Example 14.1.4 (The Dual of Example 14.1.2). Maximize V (x, y, z) = xyz
subject to SA = 2xy + 2xz + 2yz = 54 where x, y, z > 0.

Solution.

V = xyz = (x2)
1
2 (y2)

1
2 (z2)

1
2 (14.27)

= (xy · xz · yz) 1
2 (14.28)

= [(xy)
1
3 · (xz) 1

3 · (yz) 1
3]

3
2 (14.29)

(AGM) ≤
[xy
3

+
xz

3
+

yz

3

] 3
2

(14.30)

=

[
1

6
(2xy + 2xz + 2yz)

] 3
2

(14.31)

=

[
1

6
(54)

] 3
2

= 27. (14.32)

So the volume is no bigger than 27 and (again) by the AGM we reach equality
exactly when the things we are averaging are the same; that is xy = xz = yz
giving x = y = z = 3. ■

Example 14.1.2 was not so bad, but we had to be a little clever to get the
AGM to work for us in its dual (Example 14.1.4). Let us do another example
where the weights δi to use the AGM require a bit of thought.

The Arithmetic Mean-Geometric Mean Inequality (AGM) 191

Example 14.1.5. Maximize f(x, y, z) = xy2z subject to x+ y + z2 = 7 with
x, y, z > 0.

Solution. Since there are three terms, let us try averaging those and see what
happens:

7 = x+ y + z2 (14.33)

= 3

(
x

3
+

y

3
+

z2

3

)
(14.34)

≥ 3(x
1
3 y

1
3 z

2
3) (by the AGM) (14.35)

= 3(xyz2)
1
3 . (14.36)

We do not have a constant times f(xyz) to a power, so this approach has
not helped us. Note that we have one too many factors of z and not enough
factors of y, so we will try the following:

7 = x+ y + z2 (14.37)

=
x

2
+

x

2
+

y

4
+

y

4
+

y

4
+

y

4
+ z2 (14.38)

= 7

(
1

7
· x
2
+

1

7
· x
2
+

1

7
· y
4
+

1

7
· y
4
+

1

7
· y
4
+

1

7
· y
4
+

1

7
· z2
)

(14.39)

≥ 7
(x
2

) 1
7
(x
2

) 1
7
(y
4

) 1
7
(y
4

) 1
7
(y
4

) 1
7
(y
4

) 1
7 (

z2
) 1

7 (by the AGM) (14.40)

= 7

(
x2y4z2

210

) 1
7

= 7
(
xy2z

) 2
7

(
2−

10
7

)
. (14.41)

Thus
2

10
7 ≥ [f(x, y, z)]

2
7 (14.42)

giving
f(x, y, z) ≤ 25 = 32. (14.43)

Thus Max f(x, y, z) = 32 which occurs when

x

2
=

y

4
= z2 (14.44)

giving x = 2z2 and y = 4z2. Substituting these into the constraint tells us
this max occurs when z = 1, x = 2, and y = 4. ■

Example 14.1.5 illustrates that using the AGM is not always straight for-
ward. However, the following algorithm determines the weights for us.

192 Derivative-Free Methods

14.2 Weight Finding Algorithm for the AGM

We may be confronted with trying to optimize a multivariable function of the
form

Minimize g(x) = c1x1
α11x2

α12 · · ·xm
α1m + · · ·+ cnx1

αn1x2
αn2 · · ·xm

αnm

=

n∑
i=1

ci

m∏
j=1

xj
αij

 (14.45)

where ci > 0, αij are real numbers, and x1, . . . , xm > 0. Such a g(x) is not
necessarily a polynomial as the exponents can be noninteger, but this function
resembles a polynomial and is called a posynomial . We refer to this problem as
a Geometric Programming Problem (GP), and it is a perfect candidate
for the AGM. As we have seen in Example 14.1.5, figuring the weights δi to
use the AGM can be tricky, so let us develop a technique which will determine
each δi.

Let us introduce weights δi into 14.45 which we can rewrite as

Minimize g(x) =

n∑
i=1

δi

(
ci
∏m

j=1 xj
αij

δi

)
(14.46)

where δi > 0 (the Positivity Constraints) (14.47)

and

n∑
i=1

δi = 1. (the Normality Condition) (14.48)

This is a perfect situation to use the AGM inequality, so

g(x) =

n∑
i=1

δi

(
ci
∏m

j=1 xj
αij

δi

)
(14.49)

(AGM) ≥
n∏

i=1

(
ci
∏m

j=1 xj
αij

δi

)δi

(14.50)

=

n∏
i=1

(
ci
δi

)δi

·
n∏

i=1

 m∏
j=1

xj
αijδi

 (14.51)

=

n∏
i=1

(
ci
δi

)δi

·
m∏
j=1

xj

∑n
i=1 αijδi (14.52)

=

n∏
i=1

(
ci
δi

)δi

(14.53)

Weight Finding Algorithm for the AGM 193

where we have equality in line (14.53) for each fixed j if we put

n∑
i=1

αijδi = 0 for j = 1, 2, . . . ,m. (the Orthogonality Condition)

(14.54)

As well, the product in line (14.53) is so important that we name it

n∏
i=1

(
ci
δi

)δi

= v(δ).

Since we are using the AGM the posynomial g(x) is at a minimum when
the Dual Geometric Programming Problem (DGP) is at a maximum,
that is

Maximize: v(δ) =

n∏
i=1

(
ci
δi

)δi

(14.55)

Subject to: δi > 0, (the Positivity Constraint), (14.56)
n∑

i=1

δi = 1, (the Normality Condition), and (14.57)

n∑
i=1

αijδi = 0 (the Orthogonality Condition). (14.58)

where j = 1, . . . ,m. Note that, in words, αij is the exponent of variable xj in
the ith term of the objective posynomial.

Thus we have developed the Weight Finding Algorithm for the AGM
(WAG)2:

Method 14.2.1 (WAG). If we wish to minimize the posynomial

Minimize g(x) = c1x1
α11x2

α12 · · ·xm
α1m + · · ·+ cnx1

αn1x2
αn2 · · ·xm

αnm

=

n∑
i=1

ci

m∏
j=1

xj
αij

 (14.59)

where ci > 0, αij are real numbers, and x1, . . . , xm > 0, we proceed as follows:
Step 0:
Form the Dual Geometric Programming Problem (DGP), namely

max
δ
{v(δ)} = max

δ
{v(δ1, . . . , δ2)} = max

δ

{
n∏

i=1

(
ci
δi

)δi
}

subject to the constraints stated in the next step.

2In [43], this is called the Geometric Programming Procedure. As there are many kinds of
geometric programming problems and this technique only applies to a certain class (namely,
ones suitable for applying the AGM), we have opted for a different name.

194 Derivative-Free Methods

Step 1:
Compute the set F of feasible vectors δ in Rn for v(δ) such that

δi > 0, (the Positivity Constraint), (14.60)
n∑

i=1

δi = 1, (the Normality Condition), and (14.61)

for each fixed j

n∑
i=1

αijδi = 0 (the Orthogonality Condition). (14.62)

where j = 1, . . . ,m. Note that in this situation the j’s range over the
number of variables (i.e. over 1, 2, . . . ,m) and the i’s range over the
number of terms in the posynomial (i.e. over 1, 2, . . . , n)

We do this by first solving the linear equations in the Normality and Or-
thogonality conditions then impose the Positivity condition on the resulting
solution.

Step 2:
If the set F of feasible vectors from step 1

1. is empty, then STOP. The Geometric Programming problem (GP) has no
solution.

2. consists of a single vector, call it δ∗, then δ∗ is a solution to the Dual
Geometric Programming problem (DGP) and we proceed to step 4.

3. has more than one vector, go to step 3.

Step 3:
Of all the vectors in F , find the one that maximizes the dual function; that is,

max
δ
{v(δ)} = max

δ
{v(δ1, . . . , δn)} = max

δ

{
n∏

i=1

(
ci
δi

)δi
}
. (14.63)

Now go to step 4.
Step 4:

Given a solution δ∗ of the DGP, by the “if and only if” of the AGM, the
solution x∗ = ⟨x∗

1, x
∗
2, . . . , x

∗
m⟩ of the initial GP problem is found by solving

(The first term in the posynomial) u1(x
∗) = c1x

α11
1 · · ·xα1m

m = δ1 · v(δ)
(The second term in the posynomial) u2(x

∗) = c2x
α21
1 · · ·xα2m

m = δ2 · v(δ)
...

(The nth term in the posynomial) un(x
∗) = cnx

αn1
1 · · ·xαnm

m = δn · v(δ)

This system of equations can be made into a system of linear equations by
taking logarithms.

The AGM, Newton’s Method, and Reduced Gradient Compared 195

14.3 The AGM, Newton’s Method, and Reduced
Gradient Compared

Using Newton’s Method for Optimization involves derivatives and (in the mul-
tivariable case) the inverse of a matrix. Though not difficult for humans, this
can be computationally expensive and, as such, Newton’s Method is not a
preferred choice for a go-to technique to have a computer solve a geometric
programming question. As such, the (Generalized) Reduced Gradient tech-
nique is preferred, but it is not without its concerns.

We illustrate this with an example.

Example 14.3.1. Minimize f(x, y, z) = x2 + y2 + z subject to z
xy = 2 and

x, y, z > 0.

Solution. (via Newton’s Method) As the function is quadratic, by Theorem
13.1.5 we can be excited that this may be the best approach since (if the
method works) we will have convergence to the extreme value in one iteration
regardless of our starting point. Using the constraint to eliminate a variable,
the problem becomes

Minimize f(x, y) = x2 + y2 + 2xy subject to x, y > 0. (14.64)

Thus
∇f(x, y) = ⟨2x+ 2y, 2y + 2x⟩ (14.65)

and

Hf(x, y) =

[
2 2
2 2

]
. (14.66)

Since det ([Hf(x, y)]) = 0, the Hessian is not invertible and Newton’s
Method fails. ■

Let f(x, y) = 3x2+y2−2xy−8x+3y+20 and consider finding its minimum.

14.4 Exercises

Exercise 14.1. Use the AGM to minimize f(x) = x2 + 1
x2 where x > 0.

Exercise 14.2. A farmer intends to build a 60,000 square foot rectangular
livestock pen. One side of the pen is over terrain that needs cleared which has
a cost of $10 per linear foot. The cost for the remaining three sides of fence is
$5 per linear foot. Use the AGM to find the dimensions of the pen that give
the desired area at a minimum cost.

196 Derivative-Free Methods

Exercise 14.3. For a, b, c > 0, use the AGM to prove (a+ b)(b+ c)(a+ c) ≥
8abc.

Exercise 14.4. a) The harmonic mean of two positive numbers a and b is
defined to be 2ab

a+b . Show that the harmonic mean of two positive numbers
a and b is less than or equal to the geometric mean with equality if and
only if a = b.

b) The root mean squared of two positive numbers a, b is defined to be
√

a2+b2

2

(this is also referred to as the quadratic mean of a and b). Show that the
root mean squared of two positive numbers a and b is greater than or equal
to the arithmetic mean with equality if and only if a = b.

c) Write a summary statement with necessary conditions involving all four of
the means mentioned in this problem.

Exercise 14.5. Consider minimizing P = 2
xy +xy+x+ y where x and y are

positive real numbers.

i) Solve this on a computer using Steepest Descent (Generalized Reduced
Gradient) starting at (10, 10).

ii) Repeat part i) using various starting points. Compare your different an-
swers.

iii) Solve this using Evolutionary Programming by first bounding x and y
above by 108.

iv) Repeat solving this by Evolutionary Programming but now bound the vari-
ables above by 106, then 104, and then 102. Compare the answers and
runtime when using the different upper bounds.

v) Find minP and the values of the decision variables that give this P by
using the AGM.

Exercise 14.6. Consider minimizing P = 5x2 + x
y2 + 2y3

x2 where x and y are
positive real numbers. Attempt to solve this via Newton’s Method and Steepest
Descent using (1, 1) and other values as starting points. Also attempt to solve
this using the AGM. Explain why all three techniques fail.

15

Search Algorithms

As mentioned in Section 2.4, not all optimization problems can be solved
with a deterministic algorithm guaranteed to find the solution. For example,
we may not be able to use the gradient of the objective function to lead us to
the optimal value because the gradient is too expensive to calculate or because
it is not defined. All is not lost, however; we can use a heuristic to guide our
search in a way that makes finding the optimal value more likely than just
trying points at random, while offering no absolute guarantees of success.

15.1 Evolutionary Algorithms

Suppose we are hoping to maximize f(x) = x3
1 +x2x3−x2x

2
4 +x3x5 +

√
x4x5

where for each i, 0 ≤ xi ≤ 10. We can approach this problem using techniques
from the previous chapter, but let us attempt a different approach meant to
mimic evolution (for this and other biologically inspired algorithms, see [6]).
At each step in the process, we will consider a population of possible solutions
and the fitness of each, in this case the value of f . We will then create a new
population by adding variation to the solutions and applying selection.

We will begin with a population of 10 randomly selected data points in the
feasible region and consider the value of f (the fitness) at each point. In evolu-
tionary terms, each point represents an individual with a single chromosome
encoding five genes, one per component of x.

Data generated using a 10-sided die.
To introduce variation, we will randomly crossover 5 pairs of chromosomes

by swapping genes between them (one from each column; displayed in boxes)
and mutate another randomly chosen 7 genes (in light gray italics) by replac-
ing them with new random values.

If we imagine applying these operations repeatedly, we can see that re-
peated crossovers alone would ultimately create an exhaustive (but not sys-
tematic) search over the space defined by the original set of genes. Repeated
mutations of this sort will generate new points, but those points are no more
likely to be the optimal value than our original population. And if we need
find the optimal value or a point close to it, it is no more likely to per-
sist to subsequent generations than any other point. Thus, just introduction

DOI: 10.1201/9780367425517-15 197

https://doi.org/10.1201/9780367425517-15

198 Search Algorithms

TABLE 15.1
Initial Population to Begin Evolutionary Programming

Chromosome x1 x2 x3 x4 x5 Fitness
1 7.726 5.090 0.965 1.115 2.160 463.4
2 9.763 3.676 0.829 4.306 5.867 875.4
3 2.502 1.601 6.251 6.600 5.757 −1.918
4 8.720 2.567 1.637 0.961 7.274 679.4
5 0.416 6.550 3.427 0.146 9.466 55.99
6 8.540 6.620 9.397 0.711 3.514 716.3
7 5.596 9.254 2.785 2.230 9.051 184.7
8 0.682 7.355 2.418 6.491 2.021 −283.3
9 0.194 4.775 6.506 9.317 2.334 −363.6
10 6.863 8.177 1.189 6.474 1.313 −5.268

TABLE 15.2
Crossover and Mutation in the Process of Evolutionary Programming

Chromosome x1 x2 x3 x4 x5 Fitness
1 7.726 5.090 0.965 1.115 2.160 463.4

2 9.763 3.676 6.251 4.306 5.867 927.1

3 2.502 2.567 0.829 6.600 2.164 −88.45
4 8.720 1.601 1.637 0.866 9.466 682.8

5 0.237 10.00 3.427 0.711 7.274 56.43

6 8.540 6.620 9.397 0.146 3.514 718.6
7 5.596 9.254 2.785 2.230 9.051 184.7

8 0.194 7.355 2.418 6.491 0.698 −288.3
9 0.682 4.775 6.506 9.317 2.334 −363.3
10 9.505 0.155 1.189 6.474 1.313 856.9

variation alone is no different than a random search; to do better than random
search we also need to apply selection.

To apply selection, we will create a new population by choosing pairs of
individuals from the existing population in Table 15.3 and applying crossover
and mutation to generate two individuals for the new population. We will make
these choices with replacement, so that a given individual can be chosen more
than once. And we will make weighted choices so that the individuals with
higher fitness have a higher chance of being selected. This weighting adds bias
to our random search so that we tend to look in the neighborhood of the higher
fitness values we have already considered. We’ll define the probability p that
the individual i with rank Ri is chosen to be pi = (maxi Ri −Ri + 1)/

∑
i Ri.

Evolutionary Algorithms 199

TABLE 15.3
Population with Rank and Selection Probability in Evolutionary
Programming

Chromosome x1 x2 x3 x4 x5 Fitness Rank p
1 7.726 5.090 0.965 1.115 2.160 463.4 5 0.109
2 9.763 3.676 6.251 4.306 5.867 927.1 1 0.182
3 2.502 2.567 0.829 6.600 2.164 −88.45 8 0.055
4 8.720 1.601 1.637 0.866 9.466 682.8 4 0.127
5 0.237 10.00 3.427 0.711 7.274 56.43 7 0.073
6 8.540 6.620 9.397 0.146 3.514 718.6 3 0.145
7 5.596 9.254 2.785 2.230 9.051 184.7 6 0.091
8 0.194 7.355 2.418 6.491 0.698 −288.3 9 0.364
9 0.682 4.775 6.506 9.317 2.334 −363.3 10 0.018
10 9.505 0.155 1.189 6.474 1.313 856.9 2 0.164

TABLE 15.4
Population After One Round of Selection in Evolutionary Programming

Chromosome x1 x2 x3 x4 x5 Fitness Rank p

1 5.596 9.254 2.785 0.866 9.051 222.1 8 0.055
2 0.237 1.601 3.427 0.711 7.274 31.89 10 0.018
3 9.505 0.155 1.189 6.474 1.313 856.9 4.5 0.118
4 9.763 3.676 6.251 4.306 5.867 927.1 1.5 0.173
5 9.763 3.676 6.251 4.306 5.867 927.1 1.5 0.173
6 8.540 6.620 1.189 0.146 3.514 635.5 6 0.091
7 5.596 1.722 2.785 2.230 9.051 201.2 9 0.036
8 9.505 0.155 1.189 6.474 3.514 861.4 3 0.145
9 7.726 6.620 0.965 1.115 2.160 463.0 7 0.073
10 9.505 0.155 1.189 6.474 1.313 856.9 4.5 0.118

The mean fitness of the population in Table 15.3 is 315, while the mean
fitness of the population in Table 15.4 is 598, so we’ve already achieved a
substantial improvement. If we continue to repeat this process, over time the
population will tend to converge around the optimal value – with no guaran-
tees about how long that will take, however.

Variation and selection are generic concepts, and we have multiple options
for how to implement them. For example, mutation does not have to involve
replacement with another random draw from the domain. We could instead
choose a δ and randomly add or subtract that amount to the gene chosen for
mutation. This keeps the search more local to the current points, which can be

200 Search Algorithms

FIGURE 15.1
Maximum fitness over time by crossover and mutation strategy.

advantageous for points close to the optimal value but can slow down search
if the population is far from it. δ also represents a step size, which can limit
the precision of the final result; shrinking δ over time can allow for increased
precision without unnecessarily slowing down the initial search.

The crossover operation can also be modified. One can perform an evolu-
tionary search without it, one can use a single crossover point as illustrated
above or one can use multiple crossover points. On this particular task, the
best combination in terms of fastest convergence is to use δ mutations with a
single crossover. δ mutation alone performs slowest because it can only take
small steps; adding crossover introduces a means for taking big steps as well.
There is little difference between one or multiple crossover points. Random
mutations with one crossover seems to perform slightly worse and cannot quite
reach the absolute maximum, possibly because it can only take big steps. Fig-
ure 15.1 shows results averaged over 64 iterations.

The rates of all these processes can be important as well. If little vari-
ation is introduced with each generation, resources can be wasted checking
the same points repeatedly. Introducing a lot of variation in each generation
pushes this approach closer to an equivalence with random search, since any
signal selected from the previous generation will likely get replaced with a new
variation. Some experimentation may be needed to identify appropriate rates
for mutation and crossover.

Different selection strategies are possible as well. We assigned p based on
fitness rank. We could also have chosen to define p proportional to the fitness
(with appropriate shifting so that there are no negative probabilities). Given

Evolutionary Algorithms 201

FIGURE 15.2
Maximum fitness over time by selection strategy.

the wide range of starting fitness values, this would strongly bias the next
generation around the highest fitness individual, which may or may not be
advantageous depending on how close it is to the optimal value. In general,
one wants to maintain more population diversity early on, which in this case
is better achieved with rank selection.

Another consideration in selection is whether to completely replace the
previous population with each generation or to maintain one or more elite
individuals with the highest fitness from the previous generation. Preserving
elite individuals prevents the population from drifting away from a good solu-
tion even if it is optimal, at the cost of possibly biasing the population towards
a local optimum that was found first. Figure 15.2 compares results for differ-
ent selection strategies averaged over 64 iterations, all using the δ mutation
and one crossover approach.

Now, for this particular problem where the objective function is differ-
entiable and possesses a single maximum on the feasible region, a gradient
ascent method will provide a guaranteed result for much less computation
than an evolutionary algorithm, regardless of the variation or selection strate-
gies employed. Indeed, the observant student may note that the function is
monotonic increasing in x1, x3, and x5 so the optimal x will have the value
of 10 for each of those components, greatly simplifying the problem and nar-
rowing the search space before the evolutionary algorithm has crawled out of
the primordial soup.

But consider the reverse problem: Given a set of N pairs of the
form (x, y), find the polynomial g that minimizes the mean squared error

202 Search Algorithms

1
N

∑
j [yj − g(xj)]

2. Can we define a gradient over all g and readily compute
it? If there is no obvious answer, a search like an evolutionary algorithm may
be more efficient in terms of overall time spent than working out the appro-
priate gradient and then applying gradient descent.

We need to choose a representation for possible solutions that is amenable
to the variation and selection of an evolutionary algorithm. There are multiple
options. For example, we could just treat each polynomial as a character string
like x1^3+x2x3 and define a mutation as a swap of one character for another.
But then we have the potential to generate invalid expressions like xx9++ or
^^^^^^. We can potentially waste a lot of time searching in unfruitful regions
of the space. Another possible representation is to use a tree structure; this can
make for a space with more valid candidate solutions but the implementation
can get complex. For simplicity, let’s use a basic grammatical approach ([49])
that imposes some structure on the candidate solutions such that they are
always valid while keeping the details straightforward.

We’ll say that a polynomial is made up of terms, with each term having
three parts: an operator, a vector component, and an exponent. Examples of

terms include /x3
2, −x

1/3
4 , and ∗x1

1. We’ll further specify that the first term
always starts with the + operator. For the initial problem, we restricted the
xi components within the range [0, 10] because the search over all R would
never terminate. Similarly, to keep our search more bounded we’ll use a finite
set of possible exponents: 1/3, 1/2, 1, 2, and 3. For operators, we’ll choose +,
−, ∗, /, and %.

Our chromosomes then will be a sequence of the form vector component–
exponent–operator–vector component–exponent–... . We can represent these
as symbols directly or assign them numbers that index into the relevant set. A
mutation will replace an element with one randomly chosen from the appro-
priate set; an operator will always replace an operator and an exponent will
always replace a an exponent. Crossover will the same as before, swapping
elements of the same type from the same position. To evaluate fitness, we’ll
convert each sequence in to an expression, evaluate it on each xj, and compute
the mean squared error. Table 15.5 shows a possible starting population along
with fitness (mean squared error) an a sample set of (x, y) pairs.

Given the orders of magnitude difference in fitness values and the possibil-
ity for undefined results from exceeding the maximum value a given computer
may allow, rank selection seems appropriate here. And since the mutation
operation is a random one, we’ll preserve a few elite individuals so that if the
correct polynomial is found the population doesn’t drift away from it.

An observant student may note that a term like x3
1 might make a larger

contribution to the error function than a lower-order term. Thus the
√
x4x5

term may be harder to find as part of the search. We can make allowances
for behavior like this by permitting the expressions to grow over time. This
increases the likelihood that the higher-order terms are found first in a smaller
space and then the neighborhood of expressions containing those terms is

Evolutionary Algorithms 203

TABLE 15.5
Population of Polynomials

Chromosome Polynomial Fitness

1 x2
4 ∗ x

1/3
2 ∗ x2

1 + x2
3 % x3

5 % x2
2 % x

1/2
4 − x

1/2
5 /x2

2 4.07E8

2 x3
3 ∗ x2

4 + x1
5 ∗ x3

4 + x
1/3
3 /x

1/2
3 + x

1/2
1 % x

1/2
4 − x

1/2
2 3.62E8

3 x
1/2
3 + x1

2 ∗ x1
3 % x2

5 + x2
3 ∗ x1

5 % x
1/2
4 + x3

2 ∗ x21/3 7.58E5

4 x
1/3
4 − x3

3 + x1
1 % x3

2 − x
1/2
4 + x3

5 − x
1/2
4 /x2

2 ∗ x1
3 4.16E10

5 x3
2/x

1/3
1 % x

1/3
1 % x1

3/x
3
1 − x2

4 − x1
4/x

1/3
1 ∗ x21/3 ∞1

6 x3
3 ∗ x1

3/x
1
1 − x1

1 − x
1/3
2 % x

1/2
4 + x2

2 − x3
2 ∗ x

1/2
2 8.30E7

7 x
1/3
5 ∗ x1/3

1 + x
1/3
4 + x

1/2
3 + x2

2 − x3
3 ∗ x1

4 + x1
4 % x2

4 5.09E6

8 x3
3 ∗ x3

2 − x2
5 ∗ x1

4 % x1
2 ∗ x

1/2
1 − x

1/2
2 /x

1/2
2 /x

1/3
4 1.82E10

9 x
1/2
2 − x2

4 ∗ x2
3 + x2

5/x
1/3
1 /x3

5 % x1
2 − x3

1 + x
1/3
5 1.31E9

10 x
1/3
1 + x

1/3
3 + x

1/3
4 + x2

2 − x
1/3
4 ∗ x1/2

4 ∗ x1/3
1 ∗ x1

1/x
2
4 1.61E5

1Actually just larger than the largest floating point value the software could
represent

searched for the lower-order terms, rather than trying to search the large
space of all possible expressions at once.

To do this, we’ll introduce new variation operations, insertion and deletion.
Insertion will add a term (the full combination of operator, vector component,
and exponent) and deletion will remove a term. For simplicity, we can add
or remove from the end of the chromosome. Mutations will stay the same.
Crossover will need to be modified to handle chromosomes of unequal length.
The easiest way to handle this is simply to not perform crossover if the chosen
crossover point is beyond the end of one of the chromosomes, but we could
also restrict the crossover point to be within the shorter chromosome or use
modular arithmetic to keep the crossover point within the length of each
chromosome.

Table 15.6 shows the best fitting polynomials from multiple iterations of
an evolutionary algorithm using this representation and these variation and
selection strategies. Note that each expression is unique, even though the out-
put of each will be the same. This is a useful feature for the search process
because it doesn’t have to find the only solution in a very large, high dimen-
sional space; it can find one of many equivalent solutions which are spread out
in different regions of that space.

The applications of evolutionary algorithms needn’t be restricted to math-
ematical problems. For example, we could use a different grammar and set of
symbols to create computer programs instead of algebraic expressions and
then evaluate their performance on a task of interest. That task needn’t have
a quantitative output for selection, either. There are selection strategies that
use relative fitness rather than absolute fitness, such as tournament selection

204 Search Algorithms

TABLE 15.6
Sample of Evolved Polynomials

Chromosome Polynomial

1 x3
1 − x2

4 ∗ x1
2 + x

1/2
2 ∗ x1

3 ∗ x
1/2
2 + x3

3 ∗ x1
5/x

2
3 + x

1/2
4 ∗ x1/2

5

2 x3
1 − x2

4 ∗ x1
2 − x

1/2
4 + x

1/2
4 + x1

5 ∗ x1
3 + x1

3 ∗ x
1/2
2 ∗ x1/2

2 +

x
1/3
4 % x

1/3
4 % x2

4 + x
1/2
4 ∗ x1/2

5

3 x3
1−x2

4∗x1
2+x2

5%x2
5%x

1/2
5 +x1

2∗x1
3+x1

5∗x1
3+x

1/2
4 ∗x1/2

5

4 x3
1 − x2

4 ∗ x1
2 + x1

3 ∗ x
1/2
2 ∗ x1/2

2 + x1
3 ∗ x

1/2
5 ∗ x1/2

5 + x
1/2
5 ∗

x
1/3
5 /x

1/3
5 ∗ x1/2

4

5 x3
1−x2

4 ∗x1
2+x1

3 ∗x1
2+x3

3/x
2
3+x

1/2
4 ∗x1/2

5 +x1
5 ∗x1

3−x1
3

6 x1
1−x2

4∗x1
2+x3

1+x1
3∗x3

4/x
3
4∗x1

2+x1
5∗x1

3−x1
1+x

1/2
5 ∗x

1/2
4

7 x3
1 − x2

4 ∗ x1
2 + x

1/2
4 ∗ x1/2

5 + x1
2 ∗ x1

3 + x1
5 ∗ x1

3 − x1
5 + x1

5

8 x3
1 − x2

4 ∗ x1
2 + x

1/2
3 ∗ x1

2 ∗ x
1/2
3 + x3

3/x
2
3 ∗ x1

5 + x3
5 % x3

5 +

x
1/2
4 ∗ x51/x51/2

9 x3
1−x1

2∗x2
4+x1

3∗x1
5+x

1/2
5 ∗x1/2

4 +x
1/3
4 +x1

3∗x
1/3
3 /x

1/3
3 ∗

x1
2 − x

1/3
4

10 x3
1 − x2

4 ∗ x1
2 + x1

3 ∗ x1
5 + x

1/2
5 ∗ x1/2

4 + x1
3 ∗ x1

2

where two individuals at a time are randomly chosen and compared head-to-
head, with the winner being allowed to reproduce. Using this approach, we
can evolve music or visual art, where the objective function is the aesthetic
preferences of one or more human evaluators.

15.2 Ant Foraging Optimization

One way to differentiate optimization methods, particularly heuristics, is by
what they remember and how they forget. In the simplest gradient descent
scenario, a single point is remembered at a time, and it is forgotten as soon as
the gradient is followed to the next point. Evolutionary algorithms remember a
population of candidate solutions, and the ones that are not selected for repro-
duction are forgotten. Ant foraging optimization (first introduced by Dorigo
et al [19]; see [6] and [7] for an overview of further developments), another
family of heuristics inspired by biology, likewise remembers a set of candidate
solutions, but forgetting is based on which candidates are “visited” least often.

When ants are foraging, they deposit chemical signals known as
pheromones on the ground wherever they travel. When they find food, they
follow that pheromone trail back to their nest, while other ants follow it to the
food. Over time, the pheromones evaporate; if a trail is frequently used, more

Ant Foraging Optimization 205

pheromone will be deposited to offset evaporation, while infrequently used
trails will fade away. As a consequence, the trail to the nearest food source
will have the strongest signal because the round trip takes less time and gets
replenished more quickly.

Modeling pheromone deposits can be used to find shortest paths in phys-
ical space for robots or drones, or to find the shortest or most efficient routes
for software agents traversing a computer network of possibly unknown and
changing topology. Individual agents can deposit pheromone as they go and
make the choice of their next move based on the current pheromone concentra-
tions in their area around them. A physical or simulated evaporation process
can them remove some pheromone.

This model of remembering and forgetting through pheromone strength
can also be adapted for maximization and minimization tasks. For a finite
combinatorial search, the search space can be modeled as a graph. Each pos-
sible element of a candidate solution is a node in the graph, and edges connect
adjacent nodes. In the network topology scenario or problems like the trav-
eling salesman, nodes are locations and edges are available routes from that
location.

For tasks like the symbolic regression problem from the previous section,
nodes represent values that could fill positions in the expression string. To
build the graph, begin with a start position node. This node has edges to nodes
for each of the five vector components that could occupy the first position of
the string. Each of those five nodes has edges to nodes for each of the five
exponent values that could occupy the second position. Each of those five
nodes has edges to nodes for each of the five operator nodes, plus a node
representing string termination since it would be valid to end the expression
here. Those operator nodes (but not the string termination node) have edges
to nodes for the five vector components (different nodes than before), and
so on up to some maximum expression length, at which point the exponent
nodes only have a single edge each to the string termination node.

Once the graph is defined, the ant optimization algorithm loops through
two steps. First, a population of ants each travels a path through the graph
to construct a candidate solution. The ant starts at the starting node and
chooses an edge to travel along based on the pheromone level associated with
each edge. If the pheromone from node i to node j is τij , then an ant at node
i chooses to travel to node j with probability Pij :

Pij =
τij∑K
k=1 τik

where nodes 1 throughK are the neighbors of node i. Once each ant completes
its path, that path can be evaluated by the objective function.

The second step in the algorithm is to update the pheromone for every
edge. The update has an evaporation component ρ and a deposit component
δij .

τij(t+ 1) = τij(t)(1− ρ) + δij

206 Search Algorithms

The evaporation parameter ρ is a free parameter which impacts how quickly
the algorithm converges; the higher ρ is, the more the ants will base their
decision on the most recent paths chosen.

The pheromone deposit parameter δij depends on whether edge ij was part
of any ant’s path and how that path was evaluated by the objective function.
If there are m ants, and ant k at time t constructed a candidate solution Sk(t)
as a set of edges, then δij can be defined as:

δij =
m∑

k=1

∆τkij(t)

with ∆τkij(t) = Q/F (Sk(t)) if the edge ij is in Sk(t) and 0 otherwise. F (Sk)

is the objective function value for candidate solution Sk(t) and Q is another
constant parameter. If the optimization requires maximization instead of min-
imization, one can use ∆τkij(t) = QF (Sk(t)) instead.

For the symbolic regression problem, recall that certain terms in the ex-
pression contribute more to the mean squared error than others. But the
pheromone update amount is the same for every edge in candidate solution.
As a result, the algorithm may converge too quickly on paths that contain
the correct higher order terms and whichever lower order terms happened to
be chosen along with them. Multiple variations on the basic ant algorithm
exist to prevent this premature convergence, using different schemes to ensure
that all of the edges have some chance of being chosen. The MAX-MIN vari-
ation ([56]) sets a minimum and maximum value of τ and does not let the
pheromone update step exceed these bounds. The ant colony variation ([20])
constructs paths with a modified process; at each node, if a uniform random
number q drawn from U(0, 1) is less than a parameter q0 then the edge with
the highest pheromone value is chosen, otherwise one of the other edges from
the current node is chosen with equal probability. The ant colony variation
also uses a different pheromone update process; there is an evaporation step
after each ant choose an edge so that subsequent ants are more likely to choose
different edges and only the best-so-far candidate solution contributes to the
pheromone deposit step at the end of the iteration.

Ant foraging optimization can be extended to searches of continuous
spaces, such as finding the vector that maximizes the function in the previous
section. One approach is known as ACOR [55]. The memory of the algorithm is
now represented by an archive of solutions with a fixed size; when better solu-
tions are found, the lowest quality solutions are removed from the archive and
thus forgotten. Pheromone concentration is modeled implicitly via probability
density functions which have higher densities around the points represented
by the solution archive in proportion to the quality of each solution. The
pheromone update process is then simply a matter of adding the latest round
of solutions to the archive and removing the worst ones such that the archive
size stays the same.

Part IV

Convexity and the
Fundamental Theorem of

Linear Programming

http://taylorandfrancis.com

16

Important Sets for Optimization

This chapter gives us the tools to discuss an essential element of any good
study of Optimization: convexity. In addition to being its own branch of non-
linear programming, we will later use the tools from this chapter to prove the
Fundamental Theorem of Linear Programming.

16.1 Special Linear Combinations

Let

x1 =


x11

x12

...
x1m

 ,x2 =


x21

x22

...
x2m

 , · · · ,xk =


xk1

xk2

...
xkm

 (16.1)

be n×1 matrices (i.e. column vectors) with real entries. A linear combination
of x1,x2, . . . ,xk is any expression of the form

k∑
i=1

αixi (16.2)

where each αi is a real number. When we have α1 + α2 + · · · + αk = 1 in
16.2, we refer to the linear combination as an affine combination . When each
αi ≥ 0,

∑k
i=1 αixi is called a conical or nonnegative combination. Lastly, a

linear combination that is both an affine and conical combination (i.e. both∑k
i=1 α1 = 1 and αi ≥ 0 are satisfied) is called a convex combination.

Example 16.1.1. Consider the standard basis vectors of R3: i = ⟨1, 0, 0⟩,
j = ⟨0, 1, 0⟩, and k = ⟨0, 0, 1⟩. Then the linear combination of the standard
basis vectors

1

2
i− 1

3
j+

5

6
k =

〈
1

2
,−1

3
,
5

6

〉
(16.3)

is an affine combination of the vectors since 1
2−

1
3+

5
6 = 1, but not conical

combination of these vectors since one coefficient is negative.

1

3
i+

1

4
j+

1

5
k =

〈
1

3
,
1

4
,
1

5

〉
(16.4)

DOI: 10.1201/9780367425517-16 209

https://doi.org/10.1201/9780367425517-16

210 Important Sets for Optimization

is a conical combination but not affine combination of the vectors; and

1

2
i+

1

3
j+

1

6
k =

〈
1

2
,
1

3
,
1

6

〉
(16.5)

is a convex combination (and equivalently both affine and conical).

16.2 Special Sets

Equipped with the terminology of the previous section, we now introduce some
important sets.

Definition 16.2.1. Let S be a nonempty collection of n × 1 matrices (i.e.
column vectors) with real entries.

1. The linear hull or the span of S is

L(S) :=

{
k∑

i=1

αixi | xi ∈ S and αi ∈ R

}
where the sum is taken over all positive integers; that is, k is arbitrary.
Hence L(S) is the collection of all finite linear combinations of the vectors
of S.

2. The affine hull of S is

aff(S) :=

{
k∑

i=1

αixi | xi ∈ S, αi ∈ R, and

k∑
i=1

αi = 1

}

where k is again arbitrary. In other words, aff(S) is the collection of all
finite affine combinations of the vectors of S.

3. The conical hull of S is

coni(S) :=

{
k∑

i=1

αixi | xi ∈ S, αi ∈ R, and αi ≥ 0

}

where k is arbitrary. Thus coni(S) is the collection of all finite conical
(nonnegative) combinations of the vectors of S. And

4. The convex hull of S is

conv(S) :=

{
k∑

i=1

αixi | xi ∈ S, αi ∈ R, αi ≥ 0, and

k∑
i=1

αi = 1

}

where k is an arbitrary positive integer giving conv(S) to be the collection
of all finite convex combinations of the vectors of S.

Special Sets 211

FIGURE 16.1
The affine hull of S in Example 16.2.2.

The significance of hulls will be discussed shortly. First, an example illus-
trating the definitions.

Example 16.2.2. Let x1 = [1, 0, 0]T , x2 = [0, 0, 1]T and put S = {x1,x2}.
Then

L(S) := {α1x1 + α2x2 | α1, α2 ∈ R}
= {α1[1, 0, 0]

T + α2[0, 0, 1]
T | α1, α2 ∈ R} (16.6)

= {[α1, 0, α2]
T | α1, α2 ∈ R} (16.7)

which is all points in R3 with second coordinate 0; i.e. the x− z plane.

aff(S) := {α1x1 + α2x2 | α1, α2 ∈ R with α1 + α2 = 1}
= {α1[1, 0, 0]

T + α2[0, 0, 1]
T | α1, α2 ∈ R with α1 + α2 = 1} (16.8)

= {[α1, 0, 1− α1]
T | α1, α2 ∈ R} (16.9)

i.e. the line through (1, 0, 0) and (0, 0, 1). Aff(S) is illustrated in Figure 16.1.

coni(S) := {α1x1 + α2x2 | α1, α2 ∈ R and α1, α2 ≥ 0} (16.10)

= {[α1, 0, α2]
T | α1, α2 ∈ R and α1, α2 ≥ 0} (16.11)

212 Important Sets for Optimization

FIGURE 16.2
The convex hull of S in Example 16.2.2.

that is, the positive quadrant of the x− z plane.

conv(S) := {α1x1 + α2x2 | α1, α2 ∈ R;α1, α2 ≥ 0; and α1 + α2 = 1}
(16.12)

= {α1[1, 0, 0]
T + α2[0, 0, 1]

T | α1, α2 ∈ R≥0; and α1 + α2 = 1}
(16.13)

= {[α1, 0, 1− α1]
T | α1 ∈ R and 0 ≤ α1 ≤ 1} (16.14)

= aff(S) ∩ coni(S).

which is the line segment from (0, 0, 1) to (1, 0, 0). Conv(S) is illustrated in
Figure 16.2.

A better illustration of convex hull is to consider a finite collection S of
points in R2. Then the convex hull of those points, conv(S), is the collection
of all line segments between the points, the collection of all line segments
between the points on those segments, etc. This ends up giving a region that
would also be found by putting a rubber band around the figure until all of
S is in the rubber band. This is illustrated with the following diagram.

Example 16.2.3. (Convex hull of a set of points in R2.)

Note that in Example 16.2.3, conv(S) is the entire region enclosed by the
boundary line segments.

Special Sets 213

set S convex hull of S

Examples 16.2.2 and 16.2.3 will help us form geometric interpretations
of the special sets of which we are interested. Remembering these geometric
interpretations will be quite helpful. In particular,

Highlight 16.2.4. (Geometric interpretations of affine, conical, and convex.)

• affine combination means line;
• convex combination means line segment;
• conical hull is a collection of rays emitting from the origin and all the
points between the rays; and
• convex hull means putting a rubber band around the outside of all the
points.

Relations among the special sets are

Observation 16.2.5.

S ⊆ conv(S) ⊆ aff(S) ⊆ L(S)

S ⊆ conv(S) ⊆ coni(S) ⊆ L(S)

We now consider an interesting result that is hopefully not too surprising.

Proposition 16.2.6. S is a subspace of Rn if and only if S = L(S).

Proof. (⇐) By Exercise 16.1 L(S) is a subspace of Rn. Hence, since S = L(S),
S is a subspace.
(⇒) Suppose S is a subspace of Rn. We show S = L(S) by showing that
each set is a subset of the other. (⊆) If s ∈ S, then by the definition of linear
hull, 1s ∈ L(S) and thus S ⊆ L(S). (⊇) As we need to now prove L(S) ⊆ S,
we proceed by induction on the number of terms in the linear combination
from L(S): Let αs ∈ L(S). Since S is a subspace, it is closed under scalar
multiplication and thus αs ∈ S. Now suppose that any linear combination
from L(S) with k terms is in S; that is α1s1 + · · ·αksk ∈ S for any collection

214 Important Sets for Optimization

s1, . . . , sk ∈ S and α1, . . . , αk ∈ R. Consider an arbitrary linear combination
with k + 1 terms from L(S). Then

k+1∑
i=1

αisi =
k∑

i=1

αisi + αk+1sk+1

where the summation on the right-hand side is in S by the induction hypoth-
esis and αk+1sk+1 is in S by the base step. Since S is a subspace, this sum is
then also in S. Hence, by induction, L(S) ⊆ S giving S = L(S).

16.3 Special Properties of Sets

In the previous section, we introduced special sets. We now consider special
properties of sets.

Definition 16.3.1. Let S be a set, x, y ∈ S, and α, β real numbers.

• If αx+ βy ∈ S whenever α+ β = 1, then S is said to be an affine set.
• If αx+βy ∈ S whenever α, β ≥ 0, then S is said to be a convex cone with
vertex at the origin or, more simply, a conical set.
• If αx+ βy ∈ S whenever α+ β = 1 and α, β ≥ 0, then S is said to be an
convex set.

The hulls in Example 16.2.2 will serve well as examples of sets with these
special properties. Note also that the geometric interpretations of the hulls in
Highlight 16.2.4 also hold for sets with these special properties.

It is important to observe that various hulls discussed in Section 16.2 are
in some sense optimal. Let S be a set. Then the convex hull of conv(S) is the
smallest convex set that contains S. By “smallest” here we mean that any
other convex set that contains S also contains the convex hull of S, conv(S).
The same statement can be made regarding the other two properties. It is case
that these matters are formally addressed in Proposition 16.3.7 and Exercise
16.8.

To summarize:

Remark 16.3.2. • aff(S) is the smallest affine set that contains S. Hence
S = aff(S) is a quick way to state that the set S is an affine set.
• coni(S) is the smallest conical set that contains S. Hence S = coni(S) is
a quick way to state that the set S is a conical set.
• conv(S) is the smallest convex set that contains S. Hence S = conv(S) is
a quick way to state that the set S is a convex set.

Special Properties of Sets 215

aff(S) coni(S)conv(S)

Observation 16.2.5 hull relationships

S = aff(S) S = coni(S)

convex sets convex sets

Proposition 16.3.3 set relationships

FIGURE 16.3
Relationship among affine, conical, and convex hulls and sets.

Let us now consider the relationships that exist between these properties.

Proposition 16.3.3. Let S be a set. If S is affine, then it is also convex.
Similarly, if S is conical, then it is also convex.

Proof. Let S be an affine set. Then for any collection s1, s2, . . . sk of elements
from S and for any collection of real numbers α1, α2, . . . , αk where

∑k
i=1 αi =

1, we have
∑k

i=1 αisi ∈ S. Hence it follows that if we restrict the αi to be
nonnegative, the linear combination is still in S. Thus S is also convex.

The proof that if S is conical, then it is also convex is similar and is Exercise
16.3.

It is important to notice the difference between the two results in these two
recent sections: Proposition 16.3.3 is a result about sets whereas Observation
16.2.5 is a result about hulls. These are illustrated in Figure 16.3.

Example 16.3.4. Determine whether or not S =
{
[x, y]T | y ≥ x;x, y ∈ R

}
is affine, conical, or convex.

Solution. As yi ≥ xi for both points, [−1, 1]T and [1, 1]T are in S. But the
affine combination −2[−1, 1]T +1[1, 1]T = [−1, 0]T is not in S, hence S is not
affine.

Let [x1, y1]
T and [x2, y2]

T be in S and α1, α2 ≥ 0. Then an arbitrary
conical combination of elements of S is of the form

α1

[
x1

y1

]
+ α2

[
x2

y2

]
=

[
α1x1 + α2x2

α1y1 + α2y2

]
. (16.15)

But
α1y1 + α2y2 ≥ α1x1 + α2x2 since y1 ≥ x1, y2 ≥ x2, (16.16)

establishing that the arbitrary conical combination meets the membership
qualifications of S thus showing that S is conical.

Lastly, since S is conical we have by Proposition 16.3.3 that S is also
convex. ■

216 Important Sets for Optimization

Example 16.3.5. Determine whether or not T =
{
[x, y]T | x+ y ≤ 5;x, y ≥ 0

}
is affine, conical, or convex.

Solution. Note that [0, 0]T and [5, 0]T are in T but that the affine combination
−1[0, 0]T + 2[5, 0]T = [10, 0]T is not in T , hence T is not affine.

For [0, 0]T and [5, 0]T that the conical combination 1[0, 0]T + 2[5, 0]T =
[10, 0]T is not in T , hence T is not conical.

Let [x1, y1]
T and [x2, y2]

T be in T and α1 + α2 = 1 with α1, α2 ≥ 0. Then
an arbitrary convex combination of elements of T is of the form

α1

[
x1

y1

]
+ α2

[
x2

y2

]
=

[
α1x1 + α2x2

α1y1 + α2y2

]
. (16.17)

But

α1x1 + α2x2 ≥ α1 · 0 + α2 · 0 = 0 since x1, x2 ≥ 0,

α1y1 + α2y2 ≥ α1 · 0 + α2 · 0 = 0 since y1, y2 ≥ 0,
(16.18)

and

α1x1 + α2x2 + α1y1 + α2y2 ≤ (α1x1 + α1y1) + (α2x2 + α2y2) (16.19)

≤ α15 + α25 since x+ 1 + y1, x2 + y2 ≤ 5
(16.20)

= 5 since α1 + α2 = 1 (16.21)

establishing that the arbitrary convex combination meets the membership
qualifications of S showing that S is convex. ■

The next example considers the convexity of a familar object.

Example 16.3.6 (Convexity of a Circle). We show that any circle is convex
by showing that C =

{
[x1, x2]

T | x2
1 + x2

2 ≤ r2
}

is convex. Note that since a
rigid transformation of a circle does not change its convexity, we may without
loss of generality suppose C is centered at the origin.

Proof. An arbitrary convex combination of elements from C is of the form
[αx1 + βy1, αx2 + βy2]

T where [x1, x2]
T , [y1, y2]

T ∈ C and 0 ≤ α, β ≤ 1 with
α+ β = 1. Hence we establish the convexity of C if we can show

(αx1 + βy1)
2 + (αx2 + βy2)

2 ≤ r2. (16.22)

But (αx1 + βy1)
2 + (αx2 + βy2)

2

= α2(x2
1 + x2

2) + β2(y21 + y22) + 2αβ(x1y1 + x2y2) (16.23)

≤ (α2 + β2)r2 + 2αβ(x1y1 + x2y2) (16.24)

= (α2 + β2)r2 + 2αβ[x1, x2]
T · [y1, y2]T (16.25)

= (α2 + β2)r2 + 2αβ
∣∣∣∣[x1, x2]

T
∣∣∣∣ · ∣∣∣∣[y1, y2]T ∣∣∣∣ cos θ (16.26)

≤ (α2 + β2)r2 + 2αβ · r · r · 1 (16.27)

= (α2 + 2αβ + β2)r2 = r2. (16.28)

Special Properties of Sets 217

Now that we understand the important properties of sets, let us tie these
ideas together with the important sets.

Proposition 16.3.7. Let S ∈ Rn. Then

i) S is an affine set if and only if S = aff(S),
ii) S is an conical set if and only if S = coni(S), and
iii) S is an convex set if and only if S = conv(S).

We prove part i) and leave the rest as Exercise 16.5.

Proof. (⇐) Suppose S = aff(S); i.e. S is closed under all finite affine com-
binations. Hence for any x, y ∈ S and a, b ∈ R with a + b = 1, ax + by ∈ S,
establishing that S is affine.
(⇒) Now suppose S is an affine set. In the same manner as Proposition
16.2.6, we will show S = aff(S) by showing set containment both ways.
(⊆) S ⊆ aff(S) is clear by the definition of affine hull. (⊇) We again proceed
by induction on the number of terms in the affine linear combinations from
aff(S). When k = 1, αs ∈ aff(S) is also clearly in S since α must be 1.
Suppose for some positive k that any k-term affine combination from aff(S)

is also in S; that is
∑k

i=1 αiss where
∑k

i=1 αi = 1 in aff(S) is also in S.

Consider
∑k+1

i=1 αisi in aff(S). Put α = α1 + · · ·+ αk. Then

k+1∑
i=1

αisi = α1s1 + · · ·+ αksk + αk+1sk+1 (16.29)

= α
(α1

α
s1 + · · ·+

αk

α
sk

)
+ αk+1sk+1. (16.30)

Since α1

α + · · · + αk

α = α
α = 1, the sum in the parentheses is in S by the

induction hypothesis and since α+αk+1 = 1, the resulting two-term sum is in
S since S is affine. Thus, by induction, aff(S) ⊆ S giving S = aff(S).

We now establish why affine sets are so important.

Proposition 16.3.8. S ⊆ Rn is affine if and only if S − s0 is a subspace of
Rn for all s0 ∈ S.

Proof. (⇒) Suppose s0 ∈ S with S an affine set. We show that S − s0 is a
subspace by showing it is closed under linear combinations. To do this, suppose
x,y ∈ S − s0 and α, β are any real numbers. But x,y ∈ S − s0 imply that
x+ s0,y+ so ∈ S. We also have α+ β + (1− α− β) = 1 and since S is affine

α(x+ s0) + β(y + s0) + (1− α− β)s0 ∈ S (16.31)

⇔ αx+ βy + (α+ β)s0 − (α+ β)s0 + s0 ∈ S (16.32)

⇔ αx+ βy + s0 ∈ S (16.33)

218 Important Sets for Optimization

⇔ αx+ βy ∈ S − s0 (16.34)

and thus S − s0 is a subspace for every s0 ∈ S.
(⇐) For the necessary condition, suppose S−s0 is a subspace for every s0 ∈ S,
that x,y ∈ S, that α, β ∈ R with α+ β = 1. We then have x− s0,y− s0 ∈ S
and since S − s0 is a subspace

α(x− s0) + β(y − s0) ∈ S − s0. (16.35)

But

α(x− s0) + β(y − s0) = αx+ βy − (α+ β)s0 = αx+ βy − s0 (16.36)

so αx+ βy− s0 ∈ S − s0 giving αx+ βy− s0 ∈ S − s0 which establishes that
S is affine.

The significance of what we have just shown is

Highlight 16.3.9. An affine set is just a translate of some subspace.

Hence we can think of an affine set as a subspace that is lacking 0. We
add that the subspace of which a given affine set is a translate is unique. The
proof is left as an exercise (Exercise 16.9).

Since an affine set is almost a vector space

Definition 16.3.10 (Dimension of a Set). The dimension of an affine set is
the dimension of the subspace of which it is a translate. The dimension of a
set is the dimension of the set’s affine hull.

16.4 Special Objects

We have explored important sets and important properties that are in Opti-
mization. Let us now consider the geometric objects essential to the field.

We all know that ax + by = c is an equation of a line in R2. Hence we
may think of its graph as {(x, y) | ax+ by = c} which is the same as {[x, y]T |
[a, d][x, y]T = c}. A plane plays the same role in R3 as a line does in R2. A
plane has as it equation ax + by + cz = d which means we may think of its
graph as {[x, y, z]T | [a, b, c][x, y, z]T = d}. These notions generalize to

Definition 16.4.1 (Hyperplane). Let c = [c1, c2, . . . cn]
T be a nonzero vector

in Rn and b a real number. We define a hyperplane in Rn to be

H(c, b) := {[x1, x2, . . . xn]
T | cTx = b}.

Note that a hyperplane in Rn is an n− 1 dimensional affine subset of Rn

(see Exercise 16.10).
Note that a line divides R2 in half and a plane does the same for R3. We

capture this notion in the following definitions.

Exercises 219

Definition 16.4.2 (Half-space). Let c = [c1, c2, . . . cn]
T be a nonzero vector

in Rn and b a real number. For the hyperplane H(c, b) we define the upper
half space to be

H+(c, b) := {x | cTx ≥ b}

and the lower half space to be

H−(c, b) := {x | cTx ≤ b}

Definition 16.4.3 (Polyhedron, Polytope). An intersection of finitely many
half-spaces is called a polyhedron (in Greek poly = “many” and hedron =
“face of a geometric solid”). The plural of polyhedron is polyhedra, though
polyhedrons has become acceptable. If the intersection is bounded, the resulting
object is referred to as a polytope (thus a polytope is a bounded polyhedron).

Example 16.4.4. All of the feasible regions in Chapter 6 are examples of
polyhedra.

16.5 Exercises

Exercise 16.1. Let S ⊆ Rn. Use induction and Exercise 4.29 to show that
L(S) is a subspace of Rn.

Exercise 16.2. Prove the set relations in Observation 16.2.5.

Exercise 16.3. Complete the proof of Proposition 16.3.3; that is, if a set S
is conical, then S is also convex.

Exercise 16.4. Consider S = {(−3, 1), (2, 2), (1, 0)} ⊂ R2. Draw aff(S),
coni(S), and conv(S). Notice how this illustrates the first part of Figure 16.3
(this was proposed by my student Edison Hauptman immediately after he sat
through a lecture on the material).

Exercise 16.5. a. Prove part ii) of Proposition 16.3.7
b. Prove part iii) of Proposition 16.3.7

Exercise 16.6. Prove the following:

a. Any intersection of affine sets is an affine set.
b. Any intersection of conical sets is a conical set.
c. Any intersection of convex sets is a convex set.

Exercise 16.7. Example 16.3.6 shows that any circle is a convex set. A key
step in the proof is (16.24) showing that x1y1 + x2y + 2 ≤ r2 which was
established using that the vector’s magnitude is less than the radius and a
property of the dot product. Establish this inequality by

220 Important Sets for Optimization

1. using cases; that is, going through the four possibilities:

i) x1 ≤ y1, x2 ≤ y2,
ii) x1 ≤ y1, x2 > y2,
iii) x1 > y1, x2 ≤ y2, and
iv) x1 > y1, x2 > y2;

2. using Calculus to show that max(x1y1 + x2y2) ≤ r2; or
3. using the AGM.

Exercise 16.8. Prove the following:

a. Let S be a set and put F = {Aα | S ⊆ Aα, Aα is affine}; i.e. F is the
family of all affine sets that contain S as a subset. Let I be the collection
of indices of the sets in F . Prove aff(S) =

⋂
α∈I Aα. (This shows that

aff(S) is the smallest affine set containing S.)
b. Let S be a set and put G = {Aα | S ⊆ Aα, Aα is conical}; i.e. G is the

family of all conical sets that contain S as a subset. Let J be the collection
of indices of the sets in G. Prove aff(S) =

⋂
α∈J Aα. (This shows that

coni(S) is the smallest conical set containing S.)
c. Let S be a set and put H = {Aα | S ⊆ Aα, Aα is convex}; i.e. H is the

family of all conical sets that contain S as a subset. Let K be the collection
of indices of the sets in H. Prove aff(S) =

⋂
α∈K Aα. (This shows that

conv(S) is the smallest convex set containing S.)

Exercise 16.9. Proposition 16.3.8 establishes that an affine set is a translate
of some subspace. Prove this subspace is unique.

Exercise 16.10. Let H(c, b) be a hyperplane in Rn. Show that H(c, b) is an
affine set and that its dimension is n− 1.

17

The Fundamental Theorem of Linear
Programming

In Section 6.1, we approached solving a manufacturing problem for Lincoln
Outdoors by reasoning geometrically. From the starting point of that geomet-
ric reasoning, we formed the Fundamental Theorem of Linear Programming.
This chapter will provide the mathematical justification for our geometric
reasoning and, in particular, we will prove that very important theorem.

17.1 The Finite Basis Theorem

With the machinery from the previous chapter, we may now formally state the
vague understanding we have had of why the Simplex Method for answering
Linear Programming problems works. We begin with an important structural
fact about the feasible regions of LP problems. But first, some notation:

Definition 17.1.1 (Sumset). Let A and B be sets. Then

A+B := {a+ b | a ∈ A and b ∈ B},

where A+B is called a sumet or the Minkowski sum of sets A and B.

In other words, the sumset A+ B is the collection of all possible sums of
an element from A with an element from B.

Example 17.1.2. Let A = {−1, 2, 4} and B = {0, 3}. Then

A+B = {−1 + 0,−1 + 3, 2 + 0, 2 + 3, 4 + 0, 4 + 3}
= {−1, 2, 2, 5, 4, 7}
= {−1, 2, 4, 5, 7}.

Though it has little to do with how we will use sumsets, it is interesting
to note that in the example |A + B| ̸= |A||B| where |A| denotes the number
of elements in the set A. Certainly we have |A + B| ≤ |A||B| but, more
interestingly, from Combinatorics, we have |A + B| ≥ |A| + |B| − 1 with
equality if and only if A and B are arithmetic progressions with the same
common difference. This result is known as the Cauchy-Davenport Theorem.

DOI: 10.1201/9780367425517-17 221

https://doi.org/10.1201/9780367425517-17

222 The Fundamental Theorem of Linear Programming

F

p1

p2 x

FIGURE 17.1
The region F in Example 17.1.4.

We now state a very useful theorem whose proof is beyond the scope of
this text.

Theorem 17.1.3 (The Finite Basis Theorem). Let F be a convex polyhedron
with extreme points P = {p1,p2, . . . ,pn}. Then there exist directional vectors
D = {d1,d2, . . . ,dk} such that

F = conv{pi}+ coni{dj}

where i = 1, 2, . . . , n and j = 1, 2, . . . , k or, in the language of sumsets

F = conv(P) + coni(D).

That is, F is the convex combination of its extreme points and a conical com-
bination of its direction vectors.

For a proof of the theorem, see [50]. As well, we note that Theorem 17.1.3
is also known as The Minkowski-Weyl Theorem.

We illustrate the Finite Basis Theorem with the following example:

Example 17.1.4. Let F = {(x, y)|x, y ∈ R; y ≤ 0.2x+1;x, y ≥ 0}. Note that
F has P = {p1 = ⟨0, 0⟩,p2 = ⟨0, 1⟩} and for direction vectors we can use
D = {d1 = ⟨1, 0⟩,d2 = ⟨1, 5⟩}. Note that a choice of direction vectors is not
unique.

For x = ⟨3, 1⟩ ∈ F we have by Theorem 17.1.3 that

(1−A)⟨0, 0⟩+A⟨0, 1⟩+B⟨1, 0⟩+ C⟨1, 5⟩ = ⟨B + C,A+ 5C⟩ = ⟨3, 1⟩
(17.1)

where 0 ≤ A ≤ 1 and B,C ≥ 0. One way to write x as a convex combination
of the extreme points of F and a conical combination of direction vectors would
thus be

⟨3, 1⟩ = 1⟨0, 0⟩+ 0⟨0, 1⟩+ 14

5
⟨1, 0⟩+ 1

5
⟨1, 5⟩. (17.2)

The Fundamental Theorem of Linear Programming 223

17.2 The Fundamental Theorem of Linear Programming

Given The Finite Basis Theorem, we are now equipped to establish the main
result of this chapter. We will do all of the heavy lifting in the following lemma.

Lemma 17.2.1. Suppose f(x) has a maximum over the convex polyhedron F
and F has P = {p1,p2, . . . ,pn} as its extreme points and D = {d1, . . . ,dk}
as its direction vectors. Then for each j = 1, 2, . . . , k, we have f(dj) ≤ 0.

Proof. Since f(x) has a maximum over F , there exist M in R such that
f(x) ≤M for all x in F . Suppose for contradiction that f(dt) > 0 for some t
where 1 ≤ t ≤ k. By the Finite Basis Theorem

F = conv(P) + coni(D)

which means that the range of the function f(x) over the set F is

f(F) = f (conv(P) + coni(D)) (17.3)

= f

 n∑
i=1

αipi +

k∑
j=1

βjdj

 where αi, βj ≥ 0 and

n∑
i=1

αi = 1 (17.4)

=

n∑
i=1

αif(pi) +

k∑
j=1

βjf(dj) since f is linear (17.5)

≤
n∑

i=1

αiM +

k∑
j=1

βjf(dj) (17.6)

= M +

k∑
j=1

βjf(dj). (17.7)

But as dt > 0, since βt > 0 we a value of f exceeding M contradicting that
it is a maximum. Thus, for all j = 1, . . . , k, we must have that f(dj) ≤ 0.

We may now prove the chapter’s main attraction.

Theorem 17.2.2 (The Fundamental Theorem of Linear Programming). If
the linear function f(x) = c1x1 + c2x2 + · · ·+ cnxn has a maximum over the
convex polyhedron F = {y | Ay ≤ b }, then f(x) attains its maximum at one
of the extreme points of F .

Proof. By assumption, there exists x∗ ∈ F such that f(x∗) = M ≥ f(x) for
all x ∈ F . The Finite Basis Theorem (Theorem 17.1.3) gives us that there
exist extreme points P = {p1, p2, . . . , pn} and direction vectors D = {d1,
d1, . . . , dk} such that F = conv(P) + coni(D). Since there are only finitely
many extreme points pi, there exists N ∈ {1, 2, . . . , n} such that

f(pN) ≥ f(pi) for i = 1, 2, . . . , n. (17.8)

224 The Fundamental Theorem of Linear Programming

Thus we have that there are nonnegative real numbers α1, . . . , αn and
β1, . . . , βk with α1 + · · ·+ αn = 1 such that

M = f(x∗) = f

 n∑
i=1

αipi +
k∑

j=1

βjdj

 (17.9)

=
n∑

i=1

αif(pi) +
k∑

j=1

βjf(dj) since f is linear (17.10)

≥
∑
i=1

inαif(pi) by Lemma 17.2.1 (17.11)

≥
n∑

i=1

αif(pN) by 17.8 (17.12)

= f(pN)
n∑

i=1

αi (17.13)

= f(pN)

Thus f achieves its max at an extreme point of its feasible region.
The remainder of the proof is left as Exercise 17.5.

Note that Lemma 17.2.1 does not say that f(dj) is always nonnegative. It
says that if f has a maximum over F , then the value of f along the direction
vectors cannot be positive (else f would grow without bound and therefore
not have a max, which is exactly how the proof proceeds). The same is true
of the corresponding version of the lemma for when f has a minimum over F .
This is Exercise 17.4.

17.3 For Further Study

A very thorough treatment of the material in this chapter can be found in
Alexander Schrijver’s Theory of Linear and Integer Programming [50].

17.4 Exercises

Exercise 17.1. Let A = {1, 3, 5, 7, 9} and B = {2, 3, 5, 7}. Find the sumset
A+B.

Exercise 17.2. Write x = ⟨1, 10⟩ as a convex combination of P and a conical
combination of D from Example 17.1.4.

Exercises 225

Exercise 17.3. Referencing The Finte Basis Theorem (Theorem 17.1.3),
identify P and select an appropriate D for the feasible region F in Exam-
ple 6.1.1. Pick a point in the interior of F and write it the form conv(P) +
coni(D).

Exercise 17.4. Prove the proper version of Lemma 17.2.1 for when f has a
minimum over its feasible region F .

Exercise 17.5. Prove the remaining part of The Fundamental Theorem of
Linear Programming for when f has a minimum over F . This will require
Exercise 17.4.

18

Convex Functions

18.1 Convex Functions of a Single Variable

We turn our view now from sets to functions and consider the class of convex
functions. Much like linear functions, convex functions are very appealing. The
graphs of linear functions are easily understood and their properties are quite
convenient. Each of these facts makes linear programming rather straight-
forward. Likewise, convex functions have graphs with convenient character-
istics. Convex functions are useful in many areas of mathematics, but play
an especially important role in probability and optimization due to their spe-
cial properties. Calculus students will recognize two of the properties of this
section by the terms concave up and concave down, but we now call these
properties by their proper names.

Definition 18.1.1 (Single Variable Convex Function). Let C be a convex
subset of a real vector space and f : C → R a function of one variable. f is
said to be convex if for all x1, x2 ∈ C and for all λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (18.1)

If this inequality is strict when x1 ≠ x2, then the function is said to be strictly
convex.

Note that since C ⊆ R is a convex set, C is necessarily an interval (see
Exercise 18.2).

Example 18.1.2. Show f(x) = x2 is a convex function.

Solution. Note that the domain of the function is R which is a convex set. Let
λ ∈ [0, 1] and x ≤ y be real numbers. If λ = 1, we have

f(λx+ (1− λ)y) = f(x) = λf(x) + (1− λ)f(y). (18.2)

DOI: 10.1201/9780367425517-18 226

https://doi.org/10.1201/9780367425517-18

Convex Functions of a Single Variable 227

-2 -1 1 2 3 4

5

10

15

FIGURE 18.1
f(x) = x2 with line segment from x = −1 to x = 2 in Example 18.1.2.

When λ ̸= 1

0 ≤ (x− y)2 = x2 − 2xy + y2 (18.3)

⇐⇒ 2xy ≤ x2 + y2 (18.4)

⇐⇒ (1− λ)λ2xy ≤ (1− λ)λ(x2 + y2) since 1− λ, λ ≥ 0
(18.5)

⇐⇒ 2λxy − 2λ2xy ≤ λx2 − λ2x2 + λy2 − λ2y2 (18.6)

⇐⇒ λ2x2 + 2λ(1− λ)xy − λy2 ≤ λx2 − λ2y2 (18.7)

⇐⇒ λ2x2 + 2λ(1− λ)xy + y2 − λy2 ≤ λx2 + y2 − λ2y2 (18.8)

⇐⇒ λ2x2 + 2λ(1− λ)xy + (1− λ)y2 ≤ λx2 + (1− λ2)y2 (18.9)

⇐⇒ [λx+ (1− λ)y]2 ≤ λx2 + (1− λ2)y2 (18.10)

thus establishing for f(x) = x2 that

f(λx+ (1− λ)y) ≤ λf(x1) + (1− λ)f(x2).

■

Example 18.1.2 is illustrated in Figure 18.1 with x = −1 and y = 2. These
correspond to the points (−1, 1) and (2, 4) and notice that the line segment
joining the points lies above the graph of f(x) = x2. This is not an isolated
event as this holds for any line segment connecting points on the graph and
is an important property of convex functions.

Highlight 18.1.3 (Geometric Meaning of Convex Function). If f is a convex
function, then any line segment connecting points on the graph of f will lie
above the graph of f .

Note that We have not necessarily drawn this conclusion from one exam-
ple. If we look at 18.1 long enough, we see that the left-hand side considers

228 Convex Functions

functional values of any input from [x1, x2] and that they are never bigger than
any point on the line segment from (x1, f(x1)) to (x2, f(x2)). Note there is a
second geometric interpretation of convex functions – one involving tangent
lines; and we explore this after the following more elementary result.

Theorem 18.1.4. If f is a convex function defined on an open interval (a, b),
then f is continuous over (a, b).

The proof of Theorem 18.1.4 is Exercise 18.5.
Now let us suppose f(x) is differentiable over some interval I and fix a ∈ I.

By 9.4, the equation of the line tangent to f(x) at x = a is

y = f ′(a)[x− a] + f(a).

If this tangent line were to always lie below the graph of f(x), that would
mean for any b ∈ I that

f ′(a)[b− a] + f(a) ≤ f(b) (18.11)

where the left-hand side is the value of the input b on the tangent line and the
right-hand side is the value of b in the function (this is illustrated in Figure
9.4 where a = 1 and b can be any value). All of this was for a fixed value
x = a, but this a can be arbitrary. Thus we have the following observation

Observation 18.1.5. Let f be a differentiable function over an interval I.
Then every tangent line to f lies below the graph of f if and only if for any
a, b ∈ I, f ′(a)[b− a] + f(a) ≤ f(b).

Theorem 18.1.6 (First-Order Condition of Convexity). If f is differentiable
over an interval I, then f is convex over I if and only if for all a, b ∈ I

f ′(a)[b− a] + f(a) ≤ f(b). (18.12)

Proof. (=⇒) Suppose f(x) is convex, λ ∈ (0, 1], and a, b ∈ I with a ≠ b. Then

f([1− λ]a+ λb) = f(a+ λ[b− a]) ≤ (1− λ)f(a) + λf(b) (18.13)

⇐⇒ f(a+ λ[b− a])− f(a) ≤ λ[f(b)− f(a)] (18.14)

⇐⇒ f(a+ λ[b− a])− f(a)

λ
≤ f(b)− f(a) (18.15)

⇐⇒ f(a+ λ[b− a])− f(a)

λ[b− a]
[b− a] ≤ f(b)− f(a) (18.16)

and letting λ → 0 gives (here the λ[b − a] palys the role of h =△ x in the
defintion of the derivative)

f ′(a)[b− a] ≤ f(b)− f(a)

Convex Functions of a Single Variable 229

-2 -1 1 2 3 4 5

-10

10

20

FIGURE 18.2
f(x) = x2 with tangent line 4x− 4 at the point (2, 4).

. (⇐=) Now suppose for all a, b ∈ I that f ′(a)[b − a] + f(a) ≤ f(b). Let
c := λa+ (1− λ)b. Then by assumption

f(a) ≥ f(c) + f ′(c)(a− c) (18.17)

and f(b) ≥ f(c) + f ′(c)(b− c). (18.18)

Multiplying the first equation by λ and the second by 1−λ then adding gives

λf(a) + (1− λ)f(b) ≥ [λ+ 1− λ]f(c) + f ′(c)[λa+ (1− λ)b]

− [λ+ 1− λ]f ′(c) · c (18.19)

= f(c) + f ′(c) · c− f ′(c) · c (18.20)

= f(c) := f(λa+ (1− λ)b). (18.21)

Note that by Observation 18.1.5 the first-order condition of convexity
means that f(x) is convex if and only if any line tangent to f(x) over in-
terval I lies below the graph of f(x) This is illustrated in Figure 18.2. Also
note that it is clear from the proof of Theorem 18.1.6 that

Remark 18.1.7. f(x) is strictly convex if and only if the inequality in 18.12
is strict.

Note that Remark 18.1.7 says also says the following:

Highlight 18.1.8. The first-order condition of convexity preserves strictness.

It is important to note that the first order condition of convexity depends
on f being differentiable. This is an important observation as it is possible
for a function to be convex, but not necessarily differentiable over its entire
domain. See Exercise 18.7 for an example.

Let us now return to Example 18.1.2 but this time use the first-order
condition of convexity rather than the definition.

230 Convex Functions

Example 18.1.9. Use the Theorem 18.1.6 to show that f(x) = x2 is a convex
function over R.

Solution. Let a, b be elements in the trivially convex set R. Since

0 ≤ (a− b)2 = a2 − 2ab+ b2 (18.22)

we have
2a(b− a) + a2 = 2ab− a2 ≤ b2 (18.23)

establishing 18.12. ■

Going back to 18.11, we can carry our thinking a little further than we
have by noting that for a fixed b, if a < b, then 18.11 is equivalent to

f ′(a) ≤ f(b)− f(a)

b− a
(18.24)

but if a > b, then 18.11 is equivalent to

f ′(a) ≥ f(b)− f(a)

b− a
. (18.25)

This means

Observation 18.1.10. Let f be a differentiable function over an interval I.
Then

i. the secant lines to the right of a have a larger slope than the tangent line
at x = a and

ii. the secant lines to the left of a have a smaller slope than the tangent line
at x = a.

In particular, the slope of the chord formed by two points on the curve is
increasing.

We formalize the final statement in the observation by

Proposition 18.1.11. f is convex over (a, b) if and only if f(u)−f(s)
u−s ≤

f(t)−f(u)
t−u whenever a < s < u < t < b.

Proof. (=⇒) Suppose f is convex and a < s < u < t < b. Let h(x) = f(t)−f(s)
t−s

be the equation of the secant line through (s, f(s)) and (t, f(t)). Then

f(u)− f(s)

u− s
≤ h(u)− h(s)

u− s
by convexity of f(x) and that f(s) = h(s)

(18.26)

=
h(t)− h(u)

t− u
since the slope of h(x) is constant (18.27)

≤ f(t)− f(u)

t− u
by convexity of f(x) and that f(t) = h(t)

(18.28)

and thus the cords’ slopes are increasing.

Convex Functions of a Single Variable 231

(⇐=) We prove the contrapositive of the sufficient condition, namely that if
f(x) is not convex, then the slope of the chords is decreasing:

f(u)− f(s)

u− s
>

h(u)− h(s)

u− s
by non-convexity of f(x) and that f(s) = h(s)

(18.29)

=
h(t)− h(u)

t− u
since the slope of h(x) is constant (18.30)

>
f(t)− f(u)

t− u
by non-convexity of f(x) and that f(t) = h(t),

(18.31)

i.e. the slope of the chords is decreasing.

As there is a relationship between convexity and first derivatives, there is
also a relationship between convexity and second derivatives.

Theorem 18.1.12 (Second-Order Condition of Convexity). If f is twice dif-
ferentiable on I then f is convex over I if and only if f ′′(x) ≥ 0 for all x ∈ I.

Proof. (=⇒) Suppose f is convex and x, y ∈ I with x < y. By Theorem 18.1.6,

f(y) ≥ f(x) + f ′(x)(y − x) (18.32)

and f(x) ≥ f(y) + f ′(y)(x− y) (18.33)

thus

f(y)− f(x) ≥ f ′(x)(y − x) (18.34)

and f(y)− f(x) ≤ −f ′(y)(x− y) = f ′(y)(y − x) (18.35)

which gives
f ′(x)(y − x) ≤ f(y)− f(x) ≤ f ′(y)(y − x). (18.36)

Dividing the terms by (nonzero) y − x yields

f ′(x) ≤ f(y)− f(x)

y − x
≤ f ′(y). (18.37)

In particular, we have
0 ≤ f ′(y)− f ′(x) (18.38)

in which we can again divide both sides by y − x giving

0 ≤ f ′(y)− f ′(x)

y − x
. (18.39)

By letting y → x, we obtain

0 ≤ lim
y→x

f ′(y)− f ′(x)

y − x
=: f ′′(x). (18.40)

232 Convex Functions

(⇐=) Now suppose f ′′(x) ≥ 0 for all x ∈ I. Let x, y ∈ I with x < y. By the
Extended Mean Value Theorem (Theorem 9.1.8), there exists a in [x, y] such
that

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(a)(y − x)2 ≥ f(x) + f ′(x)(y − x) (18.41)

since f ′′(z) ≥ 0. Thus by the First-Order Condition of Convexity, f(x) is
convex.

Taking the limit in the proof of Theorem 18.1.12 has an interesting conse-
quence. Namely

Remark 18.1.13. If f ′′(x) > 0 for every x in I, then f is strictly convex
over I. The converse is not necessarily true.

Proof. The first part of the remark is clear from replacing each ≤ in (=⇒) in
the proof of the theorem with <. For a counterexample regarding the converse,
consider f(x) = x4 and let a,b be in R with a < b. Since

0 < 3a4 + b4 = 3a4 − 4b4 + b4 (18.42)

< 3a4 − 4a3b+ b4 (since − a > −b) (18.43)

which is equivalent to

b4 > 4a3b− 3a4 = 4a3(b− a) + a4 (18.44)

establishing that f satisfies the first-order condition for convexity and thus
f(x) = x4 is strictly convex. But f ′′(x) = 12x2 and, unfortunately, f ′′(0) =
0.

Highlight 18.1.14. Note that unlike the first-order condition of convexity,
Remark 18.1.13 points out that strictness is not preserved in the second-order
condition of convexity.

Each of the properties we have developed are important characteristics
of convex functions. As we are concerned with optimization, the apex of our
pursuit is the following theorem:

Theorem 18.1.15. Let C be a convex subset of R and f : C → R a convex
function. Then any local minimum of f over C is a global minimum of f over
C. Moreover, if f is strictly convex, then there is a unique x∗ in C such that
f(x∗) is the global minimum of f(x).

Proof. Suppose f(c) is a local minimum of f(x) over C for some c in C. This
means that there is a positive number ϵ such that f(x) ≥ f(c) whenever
c − ϵ ≤ x ≤ c + ϵ. Let y be an arbitrary element in C. Since f(x) is convex,
for any 0 ≤ λ ≤ 1 we have

f(λy + [1− λ]c) ≤ λf(y) + [1− λ]f(c) (18.45)

Concave Functions 233

and rearranging terms gives

f(c+ λ[y − c]) ≤ λ[f(y)− f(c)] + f(c). (18.46)

The inequality 18.46 holds for all λ in [0, 1], so we choose a nonzero λ small
enough such that c − ϵ ≤ c + λ(y − c) ≤ c + ϵ and thus, since f(c) is a local
minimum, 18.46 becomes

f(c) ≤ f(c+ λ[y − c]) ≤ λ[f(y)− f(c)] + f(c). (18.47)

Subtracting f(c) from both sides then dividing by nonzero λ gives the desired

f(c) ≤ f(y)

for arbitrary y in C, establishing that f(c) is a global minimum of f(x) over
C. If f(x) is strictly convex, then all of the above inequalities are strict and c
is the unique global minimizer.

Theorem 18.1.15 is wonderful, but we can actually show something
stronger and establish the most useful result in this chapter.

Theorem 18.1.16. If f is a differentiable convex function over an interval
I, then if c is a critical of point of f in I, then f(c) is the global minimum of
f over I.

Proof. Suppose c is a critical point of f over I and that x is any other value
in I. By Theorem 18.1.6 we have

f(x) ≥ f ′(c)[x− c] + f(c) = f(c) (18.48)

establishing f(c) as the global minimum.

Other examples of convex functions are included in the exercises.

18.2 Concave Functions

Definition 18.2.1 (Single Variable Concave Function).
Let C be a convex subset of a real vector space and h : C → R a function of
one variable. h is said to be concave if for all x1, x2 ∈ C and for all λ ∈ [0, 1],

h(λx1 + (1− λ)x2) ≥ λh(x1) + (1− λ)h(x2). (18.49)

If this inequality is strict when x1 ̸= x2, then the function is said to be strictly
concave.

Example 18.2.2. Show h(x) = −x2 is a concave function.

234 Convex Functions

-2 -1 1 2 3 4

-15

-10

-5

FIGURE 18.3
f(x) = −x2 with line segment from x = −1 to x = 2 in Example 18.2.2.

Solution. Negating each line of the argument in Example 18.1.2 and noting
that h(x) = −f(x) establishes the result. ■

What occurred in Example 18.2.2 is no accident:

Theorem 18.2.3. h(x) is concave if and only if −h(x) is convex,

Example 18.2.2 is illustrated in Figure 18.3 with x = −1 and y = 2. These
correspond to the points (−1,−1) and (2,−4) and notice that the line segment
joining the points lies below the graph of f(x) = −x2. As with convexity, this
is not an isolated event and holds for any line segment connecting points on
the graph and is an important property of concave functions.

Highlight 18.2.4 (Geometric Meaning of Concave Function). If f(x) is a
concave function, then any line segment connecting points on the graph of
f(x) will lie below the graph of f(x).

As with convexity this property is formally established via the first-order
condition of concavity. Note that each of the results for convex functions trans-
lates naturally to concave functions, Their statements and proofs are left as
exercises (see Exercise 18.11).

18.3 Graphs of Convex and Concave Functions

With the tools from Chapter 16, we have an alternate way to define both
convex and concave functions by focusing on their graphs. First, convex func-
tions.

As one of the meanings of the Greek prefix epi is “above”, the epigraph of
a function is the collection of points that lie above the function. That is,

Graphs of Convex and Concave Functions 235

FIGURE 18.4
The epigraph of f(x) = x4 − 3x3 − 3x2 + 7x+ 6.

FIGURE 18.5
The epigraph of f(x) = sinx.

Definition 18.3.1 (Epigraph).

epi(f) := {(x, y) | x in the domain of f and y ≥ f(x)}.

Examples of the epigraph of familiar functions are given in Figures 18.4
and 18.5.

The following theorem will explain how convex functions got their name:

Theorem 18.3.2. Let f : C → R where C is a convex set. Then f is a convex
function if and only if epi(f) is a convex set.

Proof. Let E be the epigraph of f .
(⇐=) Suppose (x1, y1), (x2, y2) ∈ E. Since these points are in E note that we
have y1 ≥ f(x1) and y2 ≥ f(x2). Further suppose f is a convex function and
0 ≤ λ ≤ 1. Then λx1+ [1−λ]x2 is in C since x1, x2 are in C and C is convex.

236 Convex Functions

FIGURE 18.6
The hypograph of f(x) = −x2.

Thus

λx1 + [1− λ]x2 ≤ f(λx1 + [1− λ]x2) since the point is in E (18.50)

≤ λf(x1) + [1− λ]f(x2) by the convexity of f(x) (18.51)

≤ λy1 + [1− λ]y2 since the points are in E, (18.52)

showing that the convex combination of arbitrary points in E is again in E.
(=⇒) We now consider two points on the graph of f , (x1, y1) and (x2, y2),
thus f(x1) = y1 and f(x2) = y2. Think of the points as vectors and since E
is convex,

λ[x1, y1]
T +(1−λ)[x2, y2]

T = [λx1+(1−λ)x2, λy1+(1−λ)y2]
T ∈ E (18.53)

thus

f(λx1 + (1− λ)x2) ≤ λy1 + (1− λ)y2 (18.54)

= λf(x1) + [1− λ]f(x2) (18.55)

establishing the convexity of f .

Concave functions once again enjoy properties analogous to convex func-
tions. First, a definition.

Definition 18.3.3 (Hypograph).

hypo(f) := {(x, y) | x in the domain of f and y ≤ f(x)}.

An example of the hypograph of a function is given in Figure 18.6.
The result of the following theorem will not be a surprise. Its proof is left

as Exercise 18.12.

Theorem 18.3.4. Let f : C → R where C is a convex set. Then f is a
concave function if and only if hypo(f) is a convex set.

Multivariable Convex Functions 237

FIGURE 18.7
f(x) = x1

2 + x2
2.

18.4 Multivariable Convex Functions

All of the results for convex functions of a single variable carry over to multi-
variable functions, including the geometric interpretations.

Definition 18.4.1 (Multivariable Convex Function). Suppose f : C → R
where C ⊆ Rn and C is a convex set. Then f is a convex function on C if
and only if for every x,y in C and any 0 ≤ λ ≤ 1,

f(λx+ [1− λ]y) ≤ λf(x) + [1− λ]f(y). (18.56)

f is strictly convex if the inequality in 18.56 is strict.

Example 18.4.2. For x = [x1.x2]
T ∈ R2, define f(x) = x1

2 + x2
2. We show

that f is a convex function.

Solution. Let a,b ∈ R2 and 0 ≤ λ ≤ 1. Then

f(λa+ [1− λ]b) = (λa1 + [1− λ]b1)
2 + (λa2 + [1− λ]b2)

2 (18.57)

≤ λa1
2 + [1− λ]b1

2 + λa2
2 + [1− λ]b2

2 by Example 18.1.2
(18.58)

= λf(a) + [1− λ]f(b) (18.59)

establishing that f satisfies 18.56. ■

Example 18.4.2 is shown in Figure 18.7. Note that we can also talk about
epigraphs of multivariable functions and the results are the same as in the
single variable case and we can also observe that geometrically, as in the
single variable case, the definition of a multivariable convex function means
that any line segment between two points on the graph lies above the graph;
specifically in its epigraph.

Definition 18.4.3. As with the single variable case, f is (strictly) concave
over a convex set C if and only if −f is (strictly) convex.

238 Convex Functions

As all of the results for convexity translate easily to results to concavity,
we will state only convexity results and leave the analogous concavity results
to the reader.

Note that Definition 18.4.1 involves only two variables. We may inductively
extend equation 18.56 to any number of variables.

Theorem 18.4.4. Suppose C ⊆ Rn is a convex set and f : C → R. If
λ1, λ2, . . . , λk are nonnegative numbers and λ1 + λ2 + · · ·+ λk = 1, then f is
convex if and only if

(λ1x1 + λ2x2 + · · ·+ λkxk) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λkf(xk). (18.60)

Moreover, if f is strictly convex on C and each λi ̸= 0, then equality holds in
18.60 if and only if x1 = x2 = · · · = xk.

Proof. (⇐=) Suppose 18.60 holds for any positive integer k. When k = 2, this
is the definition of convexity.
(=⇒) Now suppose f is convex. When k = 1, λ = 1 and 18.60 holds trivially.
When k = 2 we again have the definition of a convex function.

For the inductive step, suppose 18.60 holds for some k ≥ 1. Suppose
λ1, . . . , λk, λk+1 ≥ 0 with λ1 + · · ·+ λk + λk+1 = 1 and that x1, . . . ,xk,xk+1

are in C. If λk+1 = 0, then we have the result by the induction hypothesis.
Suppose λk+1 ̸= 0 and put

Λ = λ2 + · · ·+ λk + λk+1 and (18.61)

X =
λ2

Λ
x2 + · · ·+

λk

Λ
xk +

λk+1

Λ
xk+1. (18.62)

Since
λ2

Λ
+ · · ·+ λk

Λ
+

λk+1

Λ
=

λ2 + · · ·+ λk+1

λ2 + · · ·+ λk+1
= 1, (18.63)

18.62 satisfies the induction hypothesis. Thus

f(λ1x1 + · · ·+ λk+1xk+1)

= f(λ1x1 + [λ2x2 + · · ·+ λk+1xk+1]) (18.64)

= f

(
λ1x1 + Λ

[
λ2

Λ
x2 + · · ·+

λk+1

Λ
xk+1

])
(18.65)

= f(λ1x1 + ΛX) (18.66)

≤ λ1f(x1) + Λf(X) by the convexity of f(x) (18.67)

= λ1f(x1) + Λf

(
λ2

Λ
x2 + · · ·+

λk+1

Λ
xk+1

)
(18.68)

≤ λ1f(x1) + Λ

[
λ2

Λ
f(x2) + · · ·+

λk+1

Λ
f(xk+1)

]
by the IH (18.69)

= λ1f(x1) + λ2f(x2) + · · ·+ λk+1f(xk+1). (18.70)

Multivariable Convex Functions 239

We also establish the second statement in the theorem by induction. It is
clear that if x1 = x2 = · · · = xk, then equality holds in 18.60. For the other
direction, when k = 1 the result is trivial. Suppose k = 2, thus X = x2. If
f is strictly convex over C, then the inequality in 18.67 is a strict inequality
(since f is strictly convex) unless

x1 = X = x2. (18.71)

Suppose the statement holds for some k ≥ 1. Again, the inequality in 18.67 is
a strict inequality unless

x1 = X. (18.72)

By the induction hypothesis, 18.69 is an equality unless

x2 = · · · = xk+1. (18.73)

Thus in 18.72

x1 = X :=
λ2

Λ
x2 + · · ·+

λk

Λ
xk +

λk+1

Λ
xk+1 (18.74)

=
λ2

Λ
x2 + · · ·+

λk

Λ
x2 +

λk+1

Λ
x2 (18.75)

=
Λ

Λ
x2 = x2 (18.76)

giving x1 = x2 = · · · = xk+1.

As with single variable functions, there are convenient tools for establishing
convexity of multivariable functions; namely the first and second-order con-
ditions of convexity. Recall that for single-variable functions, the first-order
condition of convexity states that lines tangent to convex functions lie on or
below the graph of the convex function. In dimensions higher than 2, the role
of lines are played by hyperplanes. Thus the multivariable version of the first-
order of convexity will give us that tangent hyperplanes to convex functions lie
on or below the graph of the convex function. Note that If the reader needs a
refresher on the operators that play the role of the first and second derivative
for multivariable functions, please see Section 9.5.

Example 18.4.5. Find the hyperplane tangent to f(x) = x1
2 + x2

2 at the
point (2, 1).

Solution. We showed in Example 18.4.2 that f(x) = x1
2 +x2

2 is convex. The
multivariable version of 9.4, that is, the hyperplane tangent to f(x) at x = a,
is

y = f(a) +∇f(a)[x− a]. (18.77)

Note that ∇f(x) = [2x12x2], thus the tangent hyperplane is

y = f([21]T) +∇f([21]T)[x− [21]T] = 4x2 + 2x1 − 5. (18.78)

The graph of f(x) = x1
2 + x2

2 as well as its tangent hyperplane at the point
(2, 1) are shown in Figure 18.8. ■

240 Convex Functions

FIGURE 18.8
f(x) = x1

2 + x2
2 and tangent hyperplane at (2, 1).

Theorem 18.4.6 (Multivariable First-Order Condition of Convexity). If f
has continuous first partial derivatives over a convex set C, then f is convex
over C if and only if for all a,b ∈ C

∇f(a) · (b− a) + f(a) ≤ f(b). (18.79)

Moreover, f is strictly convex if and only if the inequality in 18.79 is strict.

Proof. (=⇒) Suppose f is convex and that a,b ∈ C with 0 < λ ≤ 1. Then

f(a+ λ[b− a]) = f([1− λ]a+ λb) ≤ λf(b) + [1− λ]f(a) (18.80)

giving (
f(a+ λ[b− a])− f(a)

λ

)
≤ f(b)− f(a) (18.81)

hence (
f(a+ λ[b− a])− f(a)

λ[b− a]

)
[b− a] ≤ f(b)− f(a). (18.82)

As λ→ 0, λ[b− a]→ 0, yielding

∇f(a) · (b− a) ≤ f(b)− f(a) (18.83)

which gives the desired result

∇f(a) · (b− a) + f(a) ≤ f(b). (18.84)

(⇐=) Now suppose that for all a,b ∈ C that

f(a) +∇f(a) · (b− a) ≤ b. (18.85)

Let c and d be arbitrary points in C. Note that since C is convex,

h := λc+ (1− λ)d ∈ C. (18.86)

Some algebra gives

d =
h− λc

1− λ
=

(1− λ)h− λc+ λh

1− λ
= h− λ

1− λ
(c− h). (18.87)

Multivariable Convex Functions 241

Applying 18.85 to h and c as well as to h and d yields

f(h) +∇f(h) · (c− h) ≤ c and (18.88)

f(h) +∇f(h) · (c− h)
−λ
1− λ

≤ d. (18.89)

Multiplying 18.88 by λ and 18.89 by 1− λ then adding gives

f(h) := f(λc+ [1− λ]d) ≤ λc+ [1− λ]d (18.90)

thus establishing that f is convex over the set C.
Regarding the second statement, (=⇒) for λ ̸= 1 with a ̸= b, f strictly

convex means the inequality in 18.80 is strict, and the result in this direc-
tion follows. (⇐=) For the other direction, if 18.85 is strict, then so are the
inequalities in 18.88 and 18.89, and the result follows.

Theorem 18.4.7 (Multivariable Second-Order Condition of Convexity). Sup-
pose f has continuous second partial derivatives over some open convex set
C. If the Hessian, Hf of f is positive semidefinite over C then f is convex
over C. If Hf is positive definite over C, then f is strictly convex over C.

Proof. Suppose x and y are arbitrary points in C. Since C is open, by Taylor’s
Theorem together with Lagrange’s Remainder Theorem, there is an x∗ on the
line segment joining x and y such that

f(y) = f(x) +∇f(x) · (y − x) +
1

2
(y − x) ·Hf(x∗)(y − x). (18.91)

As (y − x) · Hf(x∗)(y − x) is a quadratic form (see Chapter 12), if Hf is
positive semidefinite over C, then the quadratic form is nonnegative and

f(y) ≤ f(x) +∇f(x) · (y − x). (18.92)

The result then follows from Theorem 18.4.6. Likewise, if Hf is positive defi-
nite over C, then the quadratic form is positive and the desired results follow
from the same argument.

Also as with single variable functions, multivariable convex functions have
extremely convenient properties regarding optimization:

Theorem 18.4.8. Let C be a convex subset of Rn and f : C → R a convex
function. Then any local minimum of f over C is a global minimum of f over
C. If f is strictly convex, then any local minimizer of f is the unique global
minimizer.

Proof. Suppose f(x∗) is a local minimum of f(x) over C. Then there exists an
ϵ > 0 such that for all x with ||x∗||−ϵ ≤ ||x|| ≤ ||x∗||+ϵ we have f(x) ≥ f(x∗)
(here

|| · ||

242 Convex Functions

is the Euclidean norm). Let y be any arbitrary point in C and we have the
result if we can show f(x∗) ≤ f(y). Choose 0 < λ < 1 small enough that

||λ(y − x∗)|| < ϵ (18.93)

and that
x∗ + λ(y − x∗) ∈ C. (18.94)

Thus
||x∗ + λ(y − x∗)− x∗|| < ϵ (18.95)

and since f(x∗) is a local minimum

f(x∗) ≤ f(x∗ + λ(y − x∗)) (18.96)

= f(λy + [1− λ]x∗) (18.97)

≤ λf(y) + [1− λ]f(x∗) (18.98)

with the last inequality by the convexity of f(x). Rearranging and dividing
by λ gives

f(x∗) ≤ f(y)

establishing x∗ as a minimizer. If f(x) is strictly convex, then the above in-
equalities are strict and it follows that x∗ is the unique global minimizer.

Also, as in the single-variable case, the very useful

Theorem 18.4.9. If f is a convex function over C with continuous first
partial derivatives, then any critical of point c of f in C, is a global minimizer
of f over C.

Proof. Suppose c is a critical point of f over C and that x is any other value
in C. By Theorem 18.4.6

f(x) ≥ ∇f(c) · (x− c) + f(c) = f(c) (18.99)

as ∇f(c) = 0, establishing f(c) as the global minimum.

Establishing that a function is convex using the definition or either the
first or second-order conditions of convexity can sometimes be challenging.
The following theorem can be a useful aid in establishing convexity.

Theorem 18.4.10 (The Algebra of Convex Functions).

i) If f1, f2, . . . , fk are convex functions on a set C ⊆ Rn, then

F (x) := f1(x) + f2(x) + · · ·+ fk(x)

is a convex function over C. Moreover, if any of the fi is strictly convex,
then F is strictly convex.

Multivariable Convex Functions 243

ii) If f is a (strictly) convex function over C and c is a positive number,
then cf is also a (strictly) convex function.

iii) If f is a (strictly) convex function over C and g is a (strictly) increasing
convex function defined on the range of f in R, then g ◦ f is a (strictly)
convex function over C.

Proof. A proper proof of i) is by induction on the number of terms k in the
finite sum forming F (x). k = 1 is trivial, so suppose k = 2, that is f1 and f2
are both convex over C and that 0 ≤ λ ≤ 1. Then for any a and b in C,

(f1 + f2)(λa+ [1− λ]b) := f1(λa+ [1− λ]b) + f2(λa+ [1− λ]b) (18.100)

≤ λf1(a) + [1− λ]f1(b) + f2(a) + [1− λ]f2(b)
(18.101)

=: λ(f1 + f2)(a) + [1− λ](f1 + f2)(b) (18.102)

establishing the base case for k = 2. The rest of the induction proof is left
to the reader (see Exercise 18.13) and note that if either f1 or f2 is strictly
convex, then the above inequality is strict establishing the strict convexity of
F .

The proof of ii) is left as an Exercise 18.13.
Regarding iii), suppose f : C → R is convex and put Rf = the range

of f . Further suppose g : Rf → R is an increasing convex function and that
a,b ∈ C with 0 ≤ λ ≤ 1. Since f is convex

f(λa+ [1− λ]b) ≤ λf(a) + [1− λ]f(b) (18.103)

and therefore since g is an increasing convex function on the range of f

g(f(λa+ [1− λ]b)) ≤ g(λf(a) + [1− λ]f(b)) (18.104)

≤ λg(f(a)) + [1− λ]g(f(b)) (18.105)

establishing that g ◦ f is convex. Moreover, if f is strictly convex and g is
strictly increasing, the inequality in 18.104 is strict giving the composition to
be strictly convex.

We illustrate the utility of Theorem 18.4.10 with the following examples:

Example 18.4.11. Determine the convexity of a) f(x1, x2, x3) = x1
2+x2

2+

x3
2, b) g(x1, x2, x3) = ex1

2+x2
2+x3

2

, and c) h(x1, x2) = 2x1
2 + x2

2 − lnx1x2.

Solution. a) By Example 18.1.2, f1(x1, x2, x3) = x1
2, f2(x1, x2, x3) = x2

2,
and f3(x1, x2, x3) = x3

3 are each convex, therefore by Theorem 18.4.10,
part i), f(x1, x2, x3) = x1

2 + x2
2 + x3

2 is convex.

b) By part a) of this exercise and part ii) of Theorem 18.4.10, g(x1, x2, x3) =

ex1
2+x2

2+x3
2

is convex.

244 Convex Functions

FIGURE 18.9
Strictly convex h(x1, x2) = 2x1

2 + x2
2 − lnx1x2 from Example 18.4.11.

c) By Example 18.1.2 together with part ii) of Theorem 18.4.10, h1(x1, x2) =
2x1

2 and h2(x1, x2) = x2
2 are both convex. h3(x1, x2) = − lnx1x2 has as

its Hessian

[
1/x1

2 0
0 1/x2

2

]
with the associated quadratic form

[x1, x2]

[
1/x1

2 0
0 1/x2

2

] [
x1

x2

]
= [1/x1, 1/x2]

[
x1

x2

]
= 2 > 0,

(18.106)
thus the Hessian is positive definite and by Theorem 18.4.7 h3(x1, x2) =
− lnx1x2 is strictly convex. Thus it follows from Theorem 18.4.10 that
h(x1, x2) = 2x1

2 + x2
2− lnx1x2 is strictly convex. h(x1, x2) is pictured in

Figure 18.9.
■

As with the single variable case, analogous results to multivariable convex
functions exist for multivariable concave functions. See Exercise 18.16.

18.5 Mathematical Results from Convexity

The Generalized Arithmetic Mean-Geometric Mean Theorem was introduced
without proof in Section 14.1. We now have the equipment to establish the
result.

Theorem 18.5.1 (The Arithmetic Mean-Geometric Mean Inequality
(AGM)). If x1, . . . , xn are positive real numbers and if δ1, . . . , δn are also
positive real numbers such that δ1 + · · ·+ δn = 1, then

n∏
i=1

xi
δi ≤

n∑
i=1

δixi (18.107)

Mathematical Results from Convexity 245

with equality if and only if

x1 = x2 = · · · = xn =
n∑

i=1

δixi. (18.108)

Proof. Let f(x) = − lnx. Since f ′′(x) = 1
x2 > 0, we have that f(x) = − lnx

is strictly convex by Theorem 18.1.12. Since f is strictly convex, by Theorem
18.4.4

− ln

(
n∑

i=1

δixi

)
= f(

n∑
i=1

δixi) ≤
n∑

i=1

δif(xi) = −
n∑

i=1

δi ln(xi) (18.109)

with equality if and only if x1 = x2 = · · · = xn. Thus

ln

(
n∑

i=1

δixi

)
≥

n∑
i=1

δi ln(xi) =

n∑
i=1

ln(xi
δi) = ln(

n∏
i=1

xi
δi) (18.110)

with equality if and only if x1 = x2 = · · · = xn. But since lnx is strictly
increasing,

n∑
i=1

δixi ≥
n∏

i=1

xi
δi (18.111)

with equality if and only if x1 = x2 = · · · = xn.
Now we put X = x1 = x2 = · · · = xn. Then

n∏
i=1

xi
δi =

n∏
i=1

Xδi = X(
∑n

i=1 δi) = X1 = X, (18.112)

establishing 18.108.

Note that Theorem 18.5.1 is one form of Jensen’s Inequality and is an
acceptable alternate name of the theorem.

Another useful named inequality is

Theorem 18.5.2 (Young’s Inequality). Suppose p and q are real numbers
both greater than 1 satisfying p−1 + q−1 = 1. If x and y are positive real
numbers, then

xy ≤ xp

p
+

yq

q

with equality precisely when xp = yq.

Proof. Since 1
p ,

1
q > 0 and 1

p + 1
q = 1, by the AGM

xy = (xp)
1
p (yq)

1
q ≤ xp

p
+

yq

q
(18.113)

with equality if and only if xp = yq.

246 Convex Functions

What follows is a useful extension of Young’s Inequality to vectors. First,
a definition.

Recall that the magnitude or Euclidean norm of a vector is x =
[x1, x2, . . . , xn] is

||x|| :=
√
x1

2 + x2
2 + · · ·+ xn

2.

We generalize this to

Definition 18.5.3 (p norm). Let p be a real number with p ≥ 1. For a vector
x, define its p norm to be

||x||p := p
√
x1

p + x2
p + · · ·+ xn

p.

With this, we may now state and prove

Corollary 18.5.4 (Hölder’s Inequality). Suppose p and q are real numbers
with p, q ≥ 1 which also satisfy 1

p + 1
q = 1 and that x = [x1, x2, . . . , xn] and

y = [y1, y2, . . . , yn] are vectors in Rn. Then

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

= ||x||p||y||q. (18.114)

Proof. If either x = 0 or y = 0, then both sides of 18.114 are 0 and the
inequality is satisfied. Suppose that neither x or y is 0, then for each 1 ≤ i ≤ n,
Young’s Inequality (Theorem 18.5.2) gives

|xiyi|
||x||p||y||q

≤ 1

p

|xi|p

||x||pp
+

1

q

|yi|q

||y||qq
. (18.115)

Summing over 1 ≤ i ≤ n and noting that ||x||pp =
∑n

i=1 |xi|p and ||y||qq =∑n
i=1 |yi|q,

1

||x||p||y||q

n∑
i=1

|xiyi| ≤
1

p

1

||x||pp

n∑
i=1

|xi|p +
1

q

1

||y||qq

n∑
i=1

|yi|q =
1

p
+

1

q
= 1.

(18.116)
Multiplying both sides of 18.116 by ||x||p||y||q gives

n∑
i=1

|xiyi| ≤ ||x||p||y||q =

(
n∑

i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

. (18.117)

A corollary to the corollary is

Corollary 18.5.5 (The Cauchy-Schwarz Inequlity). Let x = [x1, x2, . . . , xn]
and y = [y1, y2, . . . , yn] be vectors in Rn. Then

|x · y| ≤ ||x|| ||y||.

Mathematical Results from Convexity 247

The proof of the Cauchy-Schwarz Inequality is left as an exercise (Exercise
18.17).

Our “named inequalities from convexity” mini-section will now be com-
plete with

Theorem 18.5.6 (Minkowski’s Inequality). If x = [x1, x2, . . . , xn] and y =
[y1, y2, . . . , yn] are vectors in Rn and if p ≥ 1, then

||x+y||p =

(
n∑

i=1

|xi + yi|p
) 1

p

≤

(
n∑

i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

= ||x||p+ ||y||p.

(18.118)

Proof. If x = 0 or y = 0, then 18.118 is 0 is an equality. Hence suppose x ̸= 0
and y ̸= 0. If p = 1, then for each 1 ≤ i ≤ n |xi + yi| ≤ |xi| + |yi| holds by
the Triangle Inequality (Theorem B.2.3), and we get 18.118 by summing over
1 ≤ i ≤ n. Thus we now also suppose that p > 1.

For this case, for t > 0, define f(t) = tp. As t is positive and p > 1,

f ′′(t) = p(p− 1)tp−2 > 0 (18.119)

establishing that f is strictly convex by the second-order condition of convexity
(Theorem 18.1.12). Since

||x||p
||x||p + ||y||p

+
||y||p

||x||p + ||y||p
= 1, (18.120)

we have for each i by the convexity of f(t) = tp that(
||x||p

||x||p + ||y||p
|xi|
||x||p

+
||y||p

||x||p + ||y||p
|yi|
||y||p

)p

<
||x||p

||x||p + ||y||p

(
|xi|
||x||p

)p

+
||y||p

||x||p + ||y||p

(
|yi|
||y||p

)p

. (18.121)

Summing over i,

n∑
i=1

(
|xi + yi|

||x||p + ||y||p

)p

≤
n∑

i=1

(
|xi|+ |yi|
||x||p + ||y||p

)p

by the triangle inequality (18.122)

=
n∑

i=1

(
||x||p

||x||p + ||y||p
|xi|
||x||p

+
||y||p

||x||p + ||y||p
|yi|
||y||p

)p

(18.123)

≤ ||x||p
||x||p + ||y||p

n∑
i=1

(
|xi|
||x||p

)p

+
||y||p

||x||p + ||y||p

n∑
i=1

(
|yi|
||y||p

)p

by 18.121

(18.124)

=
||x||p

||x||p + ||y||p
||x||pp
||x||pp

+
||y||p

||x||p + ||y||p
||y||pp
||y||pp

= 1. (18.125)

248 Convex Functions

Thus a little multiplication gives

n∑
i=1

|xi + yi|p ≤ (||x||p + ||y||p)p (18.126)

which gives the result once we take pth roots of both sides.

18.6 Exercises

Exercise 18.1. In Example 18.1.2, we showed that f(x) = x2 is a convex
function over R by using the definition of a convex function. As an alternative
approach, establish convexity using i) the first order condition of convexity
(Theorem 18.1.6) and ii) the second-order condition of convexity (Theorem
18.1.12).

Exercise 18.2. Let C = [0, 1] ∪ (2, 3) ⊂ R. Show that C is not a convex set.

Exercise 18.3. Show that any linear function f(x) = ax + b is both convex
and concave.

Exercise 18.4. Suppose f and g are convex functions over an open interval
I and that c ≥ 0. Show that fg, c, and f ± c are each convex over I.

Exercise 18.5. Prove Theorem 18.1.4 [Hint: use the Squeeze Theorem].

Exercise 18.6. Consider the non-continuous function

f(x) :=

{
0 when 0 ≤ x < 1

π when x = 1.

Show that f is convex over [0, 1] (thus showing that the interval in Theorem
18.1.4 must be open).

Exercise 18.7. Show that f(x) = |x| is not differentiable at x = 0 but is
convex over R.

Exercise 18.8. Show that

a) f(x) = eax is a convex function over R where a ∈ R;
b) g(x) = xa is a convex function over R++ := (0,∞) for a ≤ 0 or a ≥ 1

[Note that R+ := [0,∞)];
c) h(x) = −xa is a convex function over R++ for 0 ≤ a ≤ 1;
d) k(x) = |x|a for a ≥ 1 is a convex function over R;
e) l(x) = − lnx is a convex function over R++;

Exercises 249

f) m(x) = x lnx is a convex function over R++; and
g) n(x) = 1

x is convex over (0,∞) but concave over (−∞, 0).

Exercise 18.9. A function f is said to be strongly convex if for all a, b in
its domain

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)− λ(1− λ)
m

2
(||a− b||k)2 (18.127)

where m ≥ 0 and ||·||k is any norm. Note 18.127 is equivalent to saying f(x)−
m
2 (||x||k)2 is convex; i.e. f is at least as convex as a quadratic function. Also,
18.127 reduces to the definition of a convex function when m = 0. Show that
f being strongly convex implies f is strictly convex. Provide a counterexample
showing that the converse is false.

Exercise 18.10. Let f : C → R where C ⊆ R and C is a convex set and f
is a concave function. Let F = −f . Restate Definition 18.1.1 in terms of F .

Exercise 18.11. State and prove concave versions of the following convex
results:

a) Theorem 18.1.4,
b) Observation 18.1.5,
c) Theorem 18.1.6,
d) Remark 18.1.7/Highlight 18.1.8,
e) Theorem 18.1.12,
f) Remark 18.1.13/Highlight 18.1.14 (this will involve a proof and a coun-

terexample), and
g) Theorem 18.1.15.

Exercise 18.12. Prove Theorem 18.3.4.

Exercise 18.13. a) Complete the induction proof in part i) of Theorem
18.4.10.

b) Prove part ii) of Theorem 18.4.10.

Exercise 18.14. Let I be a real interval and define M(x) = max{xα | xα ∈
I}. Show that M(x) is a convex function.

Exercise 18.15. Determine the convexity over the reals of

a) f(x1, x2) = x1
2 − 2x1x2 + 4x2

2

b) g(x1, x2, x3) = 3x1
2 + 3x2

2 + 3x3
2 − 2x1x2 − 2x1x3 − 2x2x3 and

c) h(x1, x2, x3) = x1
2 + x2

2 + x3
2 − lnx1x2x3.

Exercise 18.16. a) Let f : C → R where C ⊆ Rn and C is a convex set
and f is a concave multivariable function. Let F = −f . Restate Definition
18.4.1 in terms of F .

b) State and prove the multivariable concave version of Theorem 18.4.4.
c) State and prove the multivariable concave version of Theorem 18.4.6.

250 Convex Functions

d) State and prove the multivariable concave version of Theorem 18.4.7.
e) State and prove the multivariable concave version of Theorem 18.4.8.
f) State and prove the multivariable concave version of Theorem 18.4.9.
g) State and prove the multivariable concave version of Theorem 18.4.10.

Exercise 18.17. Prove the Cauchy-Schwarz Inequality (Corollary 18.5.5).

19

Convex Optimization

Convex optimization involves optimizing a convex function over a convex set.
A large number of problems, arising from a variety of application areas, can be
formulated as convex optimization problems. These formulations are particu-
larly attractive because convex optimization problems can be solved efficiently
in theory, namely in polynomial time, and most of the time in practice. Per-
haps this should not come as a surprise in light of Theorem 18.1.15, which
establishes that all locally optimal points of a convex function are globally
optimal.

This chapter is about a few important concepts in convex optimization
and is organized as follows. Subsection 19.1 introduces the mathematical def-
inition of a convex optimization problem along with a few examples. Like
linear programs, convex optimization problems also have dual problems. We
provide a procedure for deriving the dual a convex optimization problem in
Subsection 19.2. In Subsection 19.3, we introduce and analyze an algorithm
for solving unconstrained convex optimization problems. We also discuss other
algorithms for solving convex optimization problems.

19.1 Convex Optimization and Applications

A convex optimization problem is a problem of the form

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m
(19.1)

where f : Rn → R and g1, . . . , gm : Rn → R are convex functions. It can
be shown that the feasible region of (19.1) is a convex set; we leave this as
Exercise 19.1. Accordingly, convex optimization involves minimizing a convex
function over a convex set.

Let us consider a few examples, some of which we are already familiar with
from previous chapters.

DOI: 10.1201/9780367425517-19 251

https://doi.org/10.1201/9780367425517-19

252 Convex Optimization

Example 19.1.1. Consider the linear program

min
x∈Rn

c⊤x

s.t. Ax ≥ b

x ≥ 0,

where (A, b, c) ∈ R(m−n)×n × R(m−n) × Rn. Let ai denote the i-th row of
A. The linear program has n variables, m − n linear constraints of the form
bi−a⊤i x ≤ 0, and n linear constraints of the form −xi ≤ 0. It follows that the
linear program is an instance of (19.1) with f(x) := c⊤x and

gi(x) :=

{
bi − a⊤i x i = 1, . . . ,m− n

−xi i = m− n+ 1, . . . ,m.

Next we consider a convex quadratic optimization problem in Example
(19.1.2) below. Before considering the example, it is worthwhile to recall that
not all quadratic functions are convex. Indeed, the one-dimensional function
f(x) = x2 is convex, while the one-dimensional function f(x) = −x2 is not.

Example 19.1.2. A fundamental class of convex optimization problems are
quadratic optimization problems of the form

min
x∈Rn

1

2
x⊤Qx+ c⊤x

s.t. Ax ≥ b,

(19.2)

where (A, b, c) ∈ Rm×n×Rm×Rn and Q ∈ Rn×n is symmetric positive definite.
Because Q is symmetric positive definite, the objective 1

2x
⊤Qx+c⊤x is strictly

convex (see Exercise 19.3). It follows that (19.2) is a convex optimization
problem as the feasible region is described by a system of linear inequalities.

Next we consider two special instances of (19.2) that arise in machine
learning and data science.

Example 19.1.3. Support vector machines (SVMs) are a machine learning
model used for binary classification. We provide a brief and informal descrip-
tion of SVMs here, but we discuss the model with more care in Chapter 29.

In this model, we have labeled data (a1, y1), . . . , (am, ym) ∈ Rn × {−1, 1},
and we would like to find a hyperplane that separates the data points in Rn (by
their labels −1 and 1) as much as possible, in some sense. We show in Chapter
29 that we can formulate this task as the quadratic optimization problem

min
x∈Rn,b∈R

x⊤x

s.t. yi(a
⊤
i x− b) ≥ 1 i = 1, . . . ,m

x ≥ 0.

Note that this optimization problem is indeed an instance of (19.2).

Convex Optimization and Applications 253

Example 19.1.4. Another special instance of (19.2) is linear regression

min
x∈Rn

∥Ax− b∥2 = x⊤A⊤Ax− 2b⊤Ax+ b⊤b,

where (A, b) ∈ Rk×n × Rk. Linear regression is a fundamental problem in
machine learning and data science, and we discuss it in more detail in Chapter
27.

In contrast to the examples discussed above, linear regression is an uncon-
strained optimization problem. In other words, it is an instance of (19.1) with
m = 0.

A related unconstrained optimization problem (also discussed in Chapter
27) is Lasso

min
x∈Rn

∥Ax− b∥2 + λ∥x∥1,

where λ ∈ R+ is a model parameter. In further contrast to all of the examples
discussed so far (including linear regression), Lasso does not have a differen-
tiable objective function due to the term λ∥x∥1. Indeed, in one dimension, this
term is just λ|x|, a scaled absolute value function.

So far we have seen that linear and certain quadratic optimization prob-
lems are convex, but there are much more sophisticated convex optimization
problems (that are still of practical interest). Let us take a look at one of these
problems that arises in data science.

Example 19.1.5. Suppose we are given data points a1, . . . , am ∈ Rn and
asked to compute an ellipsoid that (i) contains these points and (ii) is of
minimum volume. What is an ellipsoid and what is its volume? Let us take
some time to unpack this!

An ellipsoid is a set E(Q, c) ⊆ Rn of the form

E(Q, c) = {x ∈ Rm : (x− c)⊤Σ(x− c) ≤ 1}

that is parameterized in terms of c ∈ Rn and a symmetric positive definite
matrix Σ ∈ Rn×n. The point c is called the center of the ellipsoid, and Σ is
called the shape matrix.

How should we think about this object? Some intuition is as follows. In
two dimensions, an ellipsoid is just an ellipse with center c, and Σ captures it
shape. And more generally, we can obtain any ellipsoid by simply translating
and stretching the unit ball centered at the origin; see Exercise 19.4.

The volume of the ellipsoid E(Q, c) is

πn/2

Γ(n/2 + 1)

1√
detQ

,

where Γ(·) is the gamma function. Note that the volume of an ellipsoid does
not depend on the location of its center, which makes sense.

254 Convex Optimization

The minimum volume ellipsoid that contains a1, . . . , am is of interest in
data science because it tells us about the “shape” of the data. In particular, it
informs us of the directions in which the data varies the most and least.

Let us return to the problem at hand. In order to find the minimum volume
ellipsoid containing a1, . . . , am, we claim it is sufficient to solve the optimiza-
tion problem

min
(Q,c)∈Rn×n×Rn

detQ−1/2

s.t. (ai − c)⊤Q(ai − c) ≤ 1 i = 1, . . . ,m

Q ≻ 0.

(19.3)

First, notice that the variables of (19.3) are a matrix Q and a vector c. Ob-
serve that the first m constraints ensure that the ellipsoid contains a1, . . . , am,
respectively. And the last constraint Q ≻ 0 is shorthand for writing Q should
be positive definite. We leave it to the reader to show that the objective is
correct; see Exercise 19.5.

Unfortunately, (19.3) is not a convex optimization problem. However, we
can resolve this in two steps. First, we perform the change of variables

M = Q1/2 and z = Q1/2c

to obtain the optimization problem

min
M,z

detM−1

s.t. (Mai − z)⊤(Mai − z) ≤ 1 i = 1, . . . ,m

M ≻ 0.

(19.4)

Next, we apply a logarithmic transform to the objective (which does not change
the optimal solution as log(·) is a monotone function) to obtain

min
M,z

− log detM

s.t. (Mai − z)⊤(Mai − z) ≤ 1 i = 1, . . . ,m

M ≻ 0.

(19.5)

Problem (19.4) is a convex optimization problem; see Exercise 19.6.

19.2 Duality

Recall from Chapter 6 that every linear program has a dual linear program.
Here we develop a duality theory for convex optimization. First we introduce a
general three step procedure for constructing dual problems. Next we establish

Duality 255

some properties of the dual problems, and then we demonstrate how to use the
three step procedure to construct the dual of the linear programming problem
in Example 19.1.1 and the quadratic optimization problem in Example 19.1.2.

We consider nonlinear optimization problems of the form

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m

x ∈ X,

(19.6)

where f : Rn → R and g1, . . . , gm : Rn → R are functions, and X ⊆ Rn. So
the feasible region of (19.6) is

{x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m} ∩X.

Note that we have not assumed that f : Rn → R and g1, . . . , gm : Rn → R are
convex functions.

Below we provide the three step procedure for constructing the dual prob-
lem of (19.6).

1. First, we construct the Lagrangian function L : Rn × Rm
+ → R defined by

L(x, u) := f(x) + u⊤g(x).

Note that u is a nonnegative vector. Intuitively, we can use the Lagrangian
function to convert a constrained optimization problem into an uncon-
strained optimization problem as follows. Consider minimizing the La-
grangian with respect to x over X for a fixed value of u. Then, the term
u⊤g(x) penalizes violating the constraints gi(x) ≤ 0, i = 1, . . . ,m.

2. Next, we construct the dual function D : Rm → R defined by

D(u) := min
x∈X

L(x, u). (19.7)

We will see that the in the context of linear programming and quadratic
optimization, the optimization problem in (19.7) admits a closed form
solution (in terms of u). We will substitute this closed form solution into
(19.7) to obtain an analytic description of D(u).

3. Finally, we construct the dual problem defined by

max
u∈Rm

D(u)

s.t. u ≥ 0.
(19.8)

It follows that whenever we have an analytic description for D(u), problem
(19.8) will have an analytic description like (19.6).

256 Convex Optimization

Before considering some examples, we establish some properties of the dual
problem. Proposition 19.2.1 below shows that the dual problem satisfies a weak
duality relationship with (19.6). Interestingly, the proof does not require that
f and g1, . . . , gm are convex. In other words, weak duality holds for general
nonlinear optimization problems.

Proposition 19.2.1. Suppose that the primal problem (19.6) and dual prob-
lem (19.8) are feasible. Then the optimal values p∗ and d∗ of the primal and
dual are finite, respectively, and

p∗ ≥ d∗.

Proof. Suppose x̂ is feasible for (19.6) and û is feasible for (19.8). Then

f(x̂) ≥ f(x̂) + û⊤g(x̂)

≥ min
x∈X

f(x) + û⊤g(x)

= D(û).

It follows that the objective values p∗ and d∗ of the primal and dual, respec-
tively, are finite, and p∗ ≥ d∗.

Next we show that whenever f and g1, . . . , gm are convex, the dual function
(19.7) is concave on {u ∈ Rm : u ≥ 0}, implying we can write the dual problem
(19.8) as a convex minimization problem (by simply minimizing −D(u) over
the convex region {u ∈ Rm : u ≥ 0}).

Proposition 19.2.2. Suppose that f and g1, . . . , gm are convex. Then the
dual function (19.7) is concave on {u ∈ Rm : u ≥ 0}.

Proof. Let u1, u2 ∈ Rm
+ and u = λu1 + (1− λ)u2, where λ ∈ [0, 1]. Then

D(u) = min
x∈X

f(x) + u⊤g(x)

= min
x∈X

λ(f(x) + u⊤
1 g(x)) + (1− λ)(f(x) + u⊤

2 g(x))

≥ λ(min
x∈X

f(x) + u⊤
1 g(x)) + (1− λ)(min

x∈X
f(x) + u⊤

2 g(x))

= λD(u1) + (1− λ)D(u2),

where the inequality follows from the fact that f and g1, . . . , gm are convex.
Thus, D(u) is concave on Rm

+ .

Unlike linear programming, strong duality does not always hold in the
context of (19.6), even if (19.6) is a convex optimization problem. However,
there are a few mild sufficient conditions that ensure strong duality holds.
For example, if the feasible region contains a Slater’s point, namely a point
x ∈ Rn such that gi(x) < 0 for all i = 1, . . . ,m and x ∈ int(X), then it can
be shown that strong duality holds. The proof of this is outside of the scope
of this chapter, but we state the result in Theorem 19.2.3 below.

Duality 257

Theorem 19.2.3. Suppose f and g1, . . . , gm are convex and the feasible region
of (19.6) contains a Slater’s point. Let p∗ be the optimal value of (19.6) and
d∗ be the optimal value of (19.8). Then strong duality holds, namely

p∗ = d∗.

Let us apply the three step procedure introduced above to some examples.
First we consider the linear programming problem from Example 19.1.1.

Example 19.2.4. Consider the linear program

min
x∈Rn

c⊤x

s.t. Ax ≥ b

x ∈ X,

where X = {x ∈ Rn : x ≥ 0}. The Lagrangian function is defined by

L(x, u) = c⊤x+ u⊤(b−Ax) = u⊤b+ (c−A⊤u)⊤x.

And hence the dual function is given by

D(u) = u⊤b + min
x∈Rn

(c−A⊤u)⊤x

s.t. x ≥ 0.
(19.9)

Consider the minimization problem in (19.9) for a fixed value of u ∈ Rm. If
A⊤u ≤ c, then the optimal solution is x = 0. Otherwise, there is no optimal
solution because we can choose x in a way that makes the objective arbitrarily
small. From this discussion, it follows that

D(u) =

{
u⊤b A⊤u ≤ c

−∞ otherwise.
(19.10)

Recall that the dual problem is defined by

max
u∈Rm

D(u)

s.t. u ≥ 0.
(19.11)

And hence it follows from (19.10) that the dual of the linear program is

max
u∈Rm

b⊤u

s.t. A⊤u ≤ c

u ≥ 0,

which is also a linear program. This of course should come as no surprise in
light of Chapter 6.

258 Convex Optimization

Example 19.2.5. Recall the quadratic optimization problem from Exercise
19.1.2:

min
x∈Rn

1

2
x⊤Qx+ c⊤x

s.t. Ax ≥ b,

where Q is symmetric positive semidefinite. In this context, we will take X =
Rn.

The Lagrangian function is then defined by

L(x, u) =
1

2
x⊤Qx+ c⊤x+ u⊤(b−Ax) = u⊤b+

1

2
x⊤Qx+ (c−A⊤u)⊤x,

and hence the dual function is defined by

D(u) = min
x∈Rn

L(x, u) = u⊤b+ min
x∈Rn

(c−A⊤u)⊤x+
1

2
x⊤Qx (19.12)

For a fixed value of u, the problem

min
x∈Rn

(c−A⊤u)⊤x+
1

2
x⊤Qx

is a convex quadratic problem, and so by Theorem 18.1.15, each of its optimal
solutions x must satisfy

0 = ∇xL(x, u) = c−A⊤u+Qx,

or equivalently (because Q is positive definite),

x = −Q−1(c−A⊤u).

Substituting this into (19.12) gives

D(u) = u⊤b− 1

2
(c−A⊤u)⊤Q−1(c−A⊤u).

Thus, the dual problem is

max
u∈Rm

u⊤b− 1

2
(c−A⊤u)⊤Q−1(c−A⊤u)

s.t. u ≥ 0.

19.3 Subgradient Descent

We present and analyze an algorithm called subgradient descent that is used
to solve unconstrained optimization problems of the form

min
x∈Rn

f(x), (19.13)

where f : Rn → R is convex.

Subgradient Descent 259

Let us begin by considering the definition of a subgradient.

Definition 19.3.1. We say that g ∈ Rn is a subgradient of f at x ∈ Rn if

f(y) ≥ f(x) + g⊤(y − x) for all y ∈ Rn.

The notion of a subgradient generalizes the notion of a gradient to the
context of general (not necessarily differentiable) convex functions. To see this,
consider the first order characterization of convexity presented in Chapter 18.

It can be shown that the notion of a subgradient is well-defined in the sense
that there exists a subgradient of f at each point x ∈ Rn. We will denote the
nonempty set of subgradients of f at x by

∂f(x) := {g ∈ Rn : f(y) ≥ f(x) + g⊤(y − x) for all y ∈ Rn}.

In order to analyze subgradient descent, we will make some assumptions
about f . We will assume that (19.13) has an optimal solution x∗ ∈ Rn, and
we will let f∗ := f(x∗) denote its objective value. We will also assume that f
is Lipschitz continuous, namely

|f(x)− f(y)| ≤ L∥x− y∥ for all x, y ∈ Rn.

See Algorithm 19.3.1 for a description of subgradient descent. We see that
at iteration i of the algorithm, we update the current iterate xi by taking a
step of size ti in the opposite direction of the subgradient. It follows that sub-
gradient descent is a natural generalization of gradient descent (see Chapter
13).

Algorithm 19.3.1 Subgradient Descent for (19.13)

Input: Initial point x0 ∈ Rn and step-sizes ti, i = 0, 1,
1: for i = 0,1,. . . do
2: xi+1 ← xi − tigi, where gi ∈ ∂f(xi)
3: end for

Theorem 19.3.2. After running Algorithm 19.3.1 for k iterations, it holds
that

min
0≤i≤k

f(xi)− f∗ ≤
L2
∑k

i=0 t
2
i + ∥x− x0∥2

2
∑k

i=0 ti
.

We prove Theorem 19.3.2 below, but first we note that the theorem allows
us to answer the following practical question. For a given tolderance ϵ > 0,
how long do we need to run subgradient descent in order to compute a point
x such that f(x)− f∗ ≤ ϵ?

Corollary 19.3.3. Let ϵ > 0. If we run Algorithm 19.3.1 for

k =

⌈
∥x0 − x∗∥2L2

ϵ2

⌉
− 1

260 Convex Optimization

iterations using the step-size ti =
ϵ
L2 , then

min
0≤i≤k

f(xi)− f∗ < ϵ.

Proof. We leave the proof as Exercise 19.8.

Now we prove Theorem 19.3.2.

Proof of Theorem 19.3.2. Let x ∈ Rn. We first show that if g ∈ ∂f(x), then

∥g∥ ≤ L. (19.14)

Clearly (19.14) holds for g = 0, so suppose g ≠ 0. From the subgradient
inequality,

f(x+ g) ≥ f(x) + g⊤g = f(x) + ∥g∥2,

and hence

∥g∥2 ≤ f(x+ g)− f(x) ≤ |f(x+ g)− f(x)| ≤ L∥g∥,

where the last inequality follows from Lipschitz continuity. Dividing through
by ∥g∥ yields (19.14).

Now we are prepared to establish the theorem. For i = 0, . . . , k, it follows
from Step 2 in Algorithm 19.3.1 that

∥xi+1 − x∗∥2 = ∥xi − tigi − x∗∥2

= ∥xi − x∗∥2 ++t2i ∥gi∥2 + 2tig
⊤
i (x

∗ − xi)

≤ ∥xi − x∗∥2 + t2i ∥gi∥2 + 2ti(f
∗ − f(xi))

≤ ∥xi − x∗∥2 + t2iL
2 + 2ti(f

∗ − f(xi)), (19.15)

where the first inequality follows from the subgradient inequality and the
second inequality from (19.14). Rearranging (19.15), we obtain

2tif(x
i) ≤ 2tif

∗ + t2iL
2 + ∥xi − x∗∥2 − ∥xi+1 − x∗∥2. (19.16)

Observe that

2
k∑

i=0

ti min
0≤i≤k

f(xi) ≤ 2
k∑

i=0

tif(x
i)

≤ 2

k∑
i=0

tif
∗ + L2

k∑
i=0

t2i + ∥x0 − x∗∥2 − ∥xk+1 − x∗∥2

≤ 2
k∑

i=0

tif
∗ + L2

k∑
i=0

t2i + ∥x0 − x∗∥2, (19.17)

Subgradient Descent 261

where the second inequality follows from summing (19.16) over i = 0, . . . , k−1.
Rearranging (19.17) gives

min
0≤i≤k

f(xi)− f∗ ≤
∑k

i=0 t
2
iL

2 + ∥x0 − x∥2

2
∑k

i=0 ti
,

which is the desired result.

Let us see how to apply subgradient descent to Lasso (which recall does
not have a differentiable objective function) from Example 19.1.4.

Example 19.3.4. We are interested in applying subgradient descent to

min
x∈Rn

∥Ax− b∥2 + λ∥x∥1.

In order to apply Algorithm 19.3.1, we need to derive a formula for the sub-
gradient of the objective function at an arbtrary point x ∈ Rn. The first term
∥Ax− b∥2 in the objective is differentiable, and its gradient is

∇∥Ax− b∥2 = ∇
(
x⊤A⊤Ax− 2b⊤Ax+ b⊤b

)
= 2A⊤Ax− 2A⊤b.

A subgradient of the second term λ∥·∥1 at x is

λsgn(x),

where sgn : Rn → {−1, 0, 1}n is the function defined by

[sgn(x)]i :=


−1 xi < 0

0 xi = 0

1 xi > 0

for i = 1, . . . , n. Thus, a subgradient at x is

2A⊤Ax− 2A⊤b+ λsgn(x).

We are now prepared to apply subgradient descent to Lasso; see Algorithm
19.3.2.

Algorithm 19.3.2 Subgradient Descent for Lasso.

Input: Initial point x0 ∈ Rn and step-sizes ti, i = 0, 1,
1: for i = 0,1,. . . do
2: xi+1 ← xi − ti(2A

⊤Axi − 2A⊤b+ λsgn(xi))
3: end for

We have not addressed one detail. How do we choose the step-sizes? It
is not immediately clear from Corollary 19.3.3 because the objective function
is not Lipshitz continuous. Addressing this is outside the scope of this book;
however, we note that it is possible to establish a result similar to Corollary
19.3.3 for subgradient descent applied to Lasso.

262 Convex Optimization

Algorithms like gradient descent and subgradient descent are first order
methods because they at most use first order derivatives (as opposed to using
second or higher order derivatives). If we use higher order derivatives, then
we can develop algorithms (like Newton’s method) that converge faster. How-
ever, there is a disadvantage to using these algorithms; they have a higher
per iteration operation cost. This is one reason why first order methods are
often the algorithm of choice in modern large-scale machine learning and data
science applications that involve millions of variables.

While subgradient descent is an algorithm for unconstrained problems,
it can also be applied to certain constrained problems. There are a variety
of methods for solving constrained optimization problems, like the ellipsoid
algorithm and interior-point methods, but they are outside the scope of this
book.

19.4 Exercises

Exercise 19.1. Consider the convex optimization problem (19.1). Prove that
the feasible region is a convex set.

Exercise 19.2. Prove that the linear program discussed in Example 19.1.1
is a special case of the quadratic optimization problem discussed in Example
19.1.2.

Exercise 19.3. Consider the quadratic function f : Rn → R defined by

f(x) =
1

2
x⊤Qx+ c⊤x,

where Q is symmetric positive definite. Show that f is strictly convex.

Exercise 19.4. Consider the ellipsoid

E(Q, c) = {x ∈ Rn : (x− c)⊤Q(x− c) ≤ 1},

where c ∈ Rn and Q ∈ Rn×n is symmetric positive definite. Show that there
is a matrix M ∈ Rn×n and a vector z ∈ Rn such that

E(Q, c) = {M(x+ z) : ∥x∥ ≤ 1}.

Exercise 19.5. Show that the objective of (19.3) is correct. Hint: Use the
following two facts.

1. For invertible matrices A and B, it holds that det(AB) = det(A) det(B).

2. It holds that det(A−1) = 1/ det(A) for an invertible matrix A.

Exercises 263

Exercise 19.6. Show that the set of symmetric positive semidefinite matrices

{M ∈ Rn×n : x⊤Mx ≥ 0 for all x ∈ Rn}.

is a convex cone.

Exercise 19.7. Derive the dual problem of the convex optimization problem

min
x∈Rn

x⊤x

s.t. Ax = b.

Exercise 19.8. Prove Corollary 19.3.3.

http://taylorandfrancis.com

Part V

Combinatorial
Optimization

http://taylorandfrancis.com

20

An Introduction to Combinatorics

20.1 Introduction

The simplest classification of different areas of math is to split math into
analytic and discrete subdivisions. Analysis would be mathematics over R
where continuity is assumed and discrete mathematics would be mathematics
over Z where continuity does not apply1. “Analysis is the line; discrete math
is the dots”. Calculus belongs to the analysis side of mathematics as well as
areas like Topology and Differential Equations where as the discrete side is
home to Combinatorics, Graph theory and Abstract Algebra. Of course, there
can be overlap and a class in Number Theory could be taught from any of an
Analytic, Algebraic, or Combinatorial approach.

Almost all of our study to this point has involved mathematics from analy-
sis but there was one exception: Integer Linear Programming. It is worthwhile
to remember that Integer Linear Programming problems (discrete optimiza-
tion) were infinitely more difficult than their continuous counterparts (Linear
Programming over the Reals); in particular, Dakin’s Branch and Bound as
well as Gomory Cuts are not guaranteed to converge to a globally optimal
solution, but the Simplex Method always gives the globally optimal solution
in a finite number of steps. With continuity not in play, tools from Calculus
cannot be used and new approaches must be considered. Hence this chapter.

At its most basic level, Combinatorics is the science of counting. If Jeff
has 3 different sports coats, 7 different shirts, and 4 different slacks, then
(being a mathematician and not worrying about fashion) he has 3 · 7 · 4 = 84
different combinations of outfits. As much fun as it would be to turn this into
a Combinatorics text (we do have the prettiest proofs, as you shall see...), we
instead introduce the basics that will be used in our study and recommend
Miklós Bóna’s excellent text [5] for those wishing a deeper exploration of the
subject.

1Technically, discrete math is done over any finite or countably infinite set, but we do
not need to go into that here.

DOI: 10.1201/9780367425517-20 267

https://doi.org/10.1201/9780367425517-20

268 An Introduction to Combinatorics

20.2 The Basic Tools of Counting

Counting questions can always be stated in terms of sets and sequences. We
thus present the tools in this context; but first, some notation.

Notation (Factorial Symbol). Let n be a positive integer. Then n! := n(n−
1)(n− 2) · · · 3 · 2 · 1.

If we have nothing to add, then nothing should change; hence we regard
the empty sum to be zero (the additive identity). Likewise, multiplying by
nothing should not change anything, thus we regard the empty product as 1
(the multiplicative identity). Notice that the n in n! tells us how many factors
we have; thus, 0! has no factors and is the empty product. For this reason
(and because it makes all the theorems work), we define 0! := 1.

We should note that one thing that makes combinatorial problems difficult
is how quickly the factorial function grows. Figure 3.1 does not go beyond
x = 5 and x! is already towering over other familiar functions. Table 25.1 in
Chapter 25 also shows how quickly the values of n! can get incredibly large.

Now on to our counting machinery.

20.2.1 When We Add, Subtract, Multiply, or Divide

Our study of counting begins with the situations in which the counting can
be done via a straight-forward arithmetic operation.

Theorem 20.2.1. When we multiply: The Multiplication Principle. Let A
and B be finite sets. Then the number of pairs (a, b) where a ∈ A and b ∈ B
is |A| · |B|.

A less formal way to state this principle is “Suppose a task consists of a
sequence of two processes and there are n1 many ways to do the first process
and n2 many ways to do the second. Then there exist n1n2 many ways to do
the task”.

Our earlier example involving Jeff’s outfits in the introduction to this
chapter is an application of The Multiplication Principle. We present one more:

Example 20.2.2. Suppose a committee is to be formed from 15 women and
12 men where the committee is to have one woman and one man. By The
Multiplication Principle, this can be done in 15 · 12 = 180 different ways.

Theorem 20.2.3. When we add: The Addition Principle. Let A and B be
finite, disjoint sets (i.e. A ∩ B = ∅). Then the number of elements c where
c ∈ A or c ∈ B is |A|+ |B|.

A less formal way to state this principle is “Suppose a task consists of a
sequence of doing one of two mutually exclusive processes; that is, the task is

The Basic Tools of Counting 269

completed if we perform either a process N1 or a different process N2 where
there is no overlap in the processes. If there are n1 many ways to do the first
process and n2 many ways to do the second, then there exist n1n2 many ways
to do the task”.

Example 20.2.4. Suppose a personal identification number (PIN) for a bank
account can consist of four or five digits. By The Multiplication Principle
there are 104 ways to form a four digit password and 105 ways to choose a five
digit password. Thus, by The Addition Principle, there are 104+105 = 110,000
different ways to select such a PIN.

Notice that there is a pair of important words that will alert us to when to
multiply and when to add. When counting, “and” usually triggers multiplica-
tion where “or” is a good sign to use addition. Also, we may use Induction to
extend both The Multiplication Principle and The Addition Principle to an
arbitrary number of sets.

Theorem 20.2.5. When we Subtract: The Inclusion-Exclusion Principle Let
A and B be finite sets. Then the number of elements c where c ∈ A or c ∈ B
is |A|+ |B| − |A ∩B|.

The intuitive reason for subtracting the elements in both A and B is be-
cause they have been double counted, as we see in the next example.

Example 20.2.6. An Optimization class consisting only of Math and Com-
puter Science majors has 17 Math majors, 12 Computer Science majors, and
5 students that are majoring in both subjects. By The Inclusion-Exclusion
Principle, there are 17 + 12− 5 = 24 students in the course.

We may also extend The Inclusion-Exclusion Principle to any number of
sets. The case for three sets looks like this

|A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|A∩C|−|B∩C|+ |A∩B∩C|. (20.1)

Of course, we must remove the elements counted multiple times; that is, the
elements in the pairwise intersections. The addition at the end is to add back
the elements that have been thrown out of the count twice.

The case for three sets was given due to the fact that the statement of
Inclusion-Exclusion for an arbitrary number of sets is a bit cumbersome.

Theorem 20.2.7 (Generalized Inclusion-Exclusion.). Let A1, A2, . . . , An be
finite sets. Then

|A1 ∪ · · · ∪An| =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |

+
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1|A1 ∩ · · · ∩An|.

(20.2)

270 An Introduction to Combinatorics

Theorem 20.2.8. When we Divide: The Division Principle Let A and B be
finite sets such where f : A → B is a d − to − 1 function (i.e. every element
in B has d elements of A mapped to it). Then |B| = |A|/d.

The standard example for The Division Principle involves seating arrange-
ments at a circular table.

Example 20.2.9. Suppose six people will sit together at a circular table and
are curious how many possible ways they may arrange their choice of seats.
As the table is circular, they have decided that what matters is not which seats
people are in, but rather the order of the people at the table.

Solution. Let us label the six people as A,B,C,D,E, and F and identify a
chair as Chair 1 and label the remaining chairs in order as we move clockwise
around the table. By the Multiplication Principle, there are then 6 · 5 · 4 ·
3 · 2 · 1 = 6! ways to fill the seats with ABCDEF one possible assignment.
But BCDEFA, CDEFAB, DEFABC, EFABCD, and FABCDE are five
other arrangements that giving the same order, meaning each ordering as six
possible particular seatings. This is true in general, that is, that every possible
arrangement has 6 ways to occur, thus, by the Division Principle, there are
6!/6 = 5! = 120 different seating arrangements for the 6 at the table. ■

It is worthwhile to make clear that each of the above counting principles
is, in fact, a theorem which can be proven. The approach would begin with a
mathematical understanding of counting: form a bijection from the collection
of objects being counted into a subset of N. As most of us are comfortable
with trusting counting, we will forgo the proofs and refer curious readers to
most discrete math, introduction to theoretical math, or basic Combinatorics
textbooks.

20.2.2 Permutations and Combinations

Equipped with these basic counting tools, we may now build more useful
equipment.

Definition 20.2.10 (Permutation). Let S be a finite set with n elements. An
r-permutation of S is a sequence (ordered list) of r elements from S.

Theorem 20.2.11 (Number of r-Permutations without Repetition). Let S
be a finite set with n elements. Then for r ≤ n, the number of r-permutations
of S when there is no repetition of the elements from S is

P (n, r) = n · (n− 1) · · · · · (n− r + 1) =
n!

r!
.

Proof. By the Multiplication Principle, there are n choices for the first element,
n− 1 choices for the second element, . . . , n− (r − 1) = n− r + 1 for the rth

element.

The Basic Tools of Counting 271

Example 20.2.12. Suppose the senior class at a high school has 52 students.
How many ways are there to select a president, vice-president, and a secre-
tary/treasurer?

Solution. We can think of choosing the officers as forming an ordered list of
three of the classmates (a 3-permutation); hence the number of ways to pick
the officers is P (52, 3) = 132,600. ■

It is important to drive home that permutations count sequences; namely,
they are used when order matters. When order does not matter, combinations
are used.

Definition 20.2.13 (Combination). Let S be a finite set with n elements. An
r-combination of S is an unordered collection of r elements from S.

The unordered collection of elements is not necessarily a set as we be
interested in collecting elements with repetition. This collection would then
be a multiset.

Theorem 20.2.14 (Number of r-Combinations without Repetition). Let S
be a finite set with n elements. Then for r ≤ n, the number of r-combinations2

of S is

C(n, r) =

(
n

r

)
=

n!

r!(n− r)!
.

Note that the alternate notation
(
n
r

)
for r-combinations is called a binomial

coefficient and is read “n choose r”. We will explore these and the reason for
this name in the next section.

Proof. By Theorem 20.2.11, there are P (n, r) r-permutations of the r ele-
ments. As order does not matter (set versus sequence) and there are r! dif-
ferent orderings of a given collection of r elements, by the Division Prin-

ciple, C(n, r) = P (n,r)
r! = n·(n−1)·····(n−r+1)

r! = n·(n−1)·····(n−r+1)
r! · (n−r)!

(n−r)! =
n!

r!(n−r)! .

Example 20.2.15. Suppose the senior class at a high school has 52 students.
How many ways are there to form a three person committee from this senior
class?

Solution. As the order of the committee members does not matter, we can
think of choosing the committee as forming an unordered collection (since the
same person cannot be on the committee more than once, we are actually form-
ing a subset). Thus we are counting the number of possible 3-combinations
which is C(52, 3) = 22,100. ■

2It is possible to extend the meaning of this symbol beyond nonnegative integers and to
cases where r > n, but this is not relevant to our work.

272 An Introduction to Combinatorics

Before continuing, we note that the binomial coefficients enjoy a special
property.

Theorem 20.2.16 (Symmetric Property of Binomial Coefficients). Let n and
r be nonnegative integers with r ≤ n. Then(

n

r

)
=

(
n

n− r

)
.

Proof. We can easily prove this property by applying the formula for the
symbol, but let us take this opportunity to use one of the more beautiful
aspects of Combinatorics: proofs via a counting argument3. This is done by
showing that the two sides of the equality count the same thing but in different
ways; namely

(
n
r

)
counts the number of ways to form an r person committee

from a group of n people by choosing the r people to be on the committee. The
right-hand side counts the same thing by instead choosing the n − r people
that are not on the committee4.

Our excursion into permutations and combinations was in the context that
objects were not permitted to be repeated (this is implied by the definition
of set but not part of the definition of a sequence). Let us now consider the
situation where objects can be repeated.

Example 20.2.17. A lottery draws from a urn of ping-pong balls labeled 1
through 20. Four ping-pong balls are drawn to select the winning number and
after a ball is selected it is put back into the urn before choosing the next
number. The lottery rules state that the winning numbers must appear in the
same order the numbers were drawn. How many ways are there to create a
winning number in this lottery?

Solution. Here we are counting the number of 4-permutations from a collection
of 20 objects with repetition of objects permitted. Thus, by the Multiplication
Principle, there are 204 = 160,000 possible winning numbers. ■

From the example, we see that an easy application of the Multiplication
Principle gives

Theorem 20.2.18 (r-Permutations with Repetition of Objects). The num-
ber of r-permutations from a collection of n objects with repetition of objects
permitted is nr.

Now the number of r-combinations with repetition of objects is a bit tricky,
but a proper way of looking at the problem makes counting these quite easy.

3As claimed, Combinatorics does have the prettiest proofs.
4If your initial reaction to a counting argument is that it is not formal enough to qualify

as a proof, you are not alone. Do realize, though, that the process of counting can be done
formally by introducing a bijection, which we certainly can do here, but in most cases none
of us distrust counting enough to go to this extreme level of formality.

The Binomial Theorem and Binomial Coefficients 273

Example 20.2.19. An ice cream shop offers homemade ice cream available in
4 flavors. In how many ways can a customer take home 6 pints of ice cream?
(Here we are regarding pints of the same flavor as the same; i.e. a flavor is
permitted to be repeated.)

Solution. As the order of the ice cream is irrelevant, this is a question where
we count combinations but with the added difficulty of possible repetitions. A
solution can be obtained by using the Addition Principle and considering all
possible combinations of repeated flavors; but that is much too complicated.
Instead, let us represent each pint taken home with an ∗ and we will separate
flavor groupings by using a |. Thus ∗ | ∗ ∗ | | ∗ ∗ ∗ represents a customer order
of one pint of the first flavor, two pints of the second flavor, no pints of the
third flavor, and three pints of the final flavor. This representation by “stars
and bars” helps us see that the solution is that there are C(6+4− 1, 4− 1) =(
9
3

)
=
(
9
6

)
= 84 possible combinations of 6 pints of the 4 flavors. ■

We thus have

Theorem 20.2.20 (r-Combinations with Repetition of Objects). The number
of r-combinations from a set of n objects with repetition possible is C(n+ r−
1, n− 1) = C(n+ r − 1, r).

A summary of counting permutations and combinations is given in Table
20.1 at the end of Section 20.4.

20.3 The Binomial Theorem and Binomial Coefficients

20.3.1 Pascal’s Triangle

Recall that Pascal’s Triangle has the form:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

...
...

where the outer diagonals are all ones and the inner entries are formed by
summing the two entries above. This pattern was known by many before
Pascal, but his name is attached as he dedicated a treatise to the triangle
which included many previously undiscovered uses.

Pascal’s Triangle is very useful for expanding binomials as its entries are
the coefficients in the expansion. For example:

274 An Introduction to Combinatorics

Example 20.3.1.

(2x− 3y)4 = 1(2x)4(−3y)0 + 4(2x)3(−3y)1 + 6(2x)2(−3y)2 + 4(2x)1(−3y)3

+ 1(2x)0(−3y)4

= 16x4 − 96x3y + 216x2y2 − 216xy3 + 81y4.

But why does this work?

20.3.2 Binomial Coefficients

From the previous section, we have C(n, r) =
(
n
r

)
= n!

r!(n−r)! where n! :=

n(n − 1)(n − 2) · · · 3 · 2 · 1 and 0! := 1. These are known as the binomial
coefficients and are used to count the number of ways to select r objects
(without replacement) from a group of n objects.

Notice that
(
1
1

)
= 1,

(
2
0

)
= 1,

(
2
1

)
= 2,

(
2
2

)
= 1,

(
3
0

)
= 1,

(
3
1

)
= 3, Do

these numbers look familiar?
Our observations make in reasonable to conjecture that Pascal’s Triangle

is really (
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
...

...
...

Our conjecture can be proven and is, in fact, known as the Binomial
Theorem :

20.3.3 The Binomial Theorem

Theorem 20.3.2 (The Binomial Theorem). For and nonnegative integer n,

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

We offer two proofs of the Binomial Theorem; a standard proof using
induction5 and then a beautiful counting argument.

The first proof by Induction on n involves using

Lemma 20.3.3 (Pascal’s Identity). For a nonnegative integer k and a positive
integer j, (

k + 1

j

)
=

(
k

j − 1

)
+

(
k

j

)
. (20.3)

5The author would like to point out that he finds induction proofs soulless and boring;
induction is certainly a valid proof technique, but it offers no insight into why the result is
what it is.

The Binomial Theorem and Binomial Coefficients 275

Proof (of Pascal’s Identity6).
From the formula for calculating binomial coefficients,(

k

j − 1

)
+

(
k

j

)
=

k!

(k − [j − 1])!(j − 1)!
+

k!

(k − j)!j!

=
k!j

(k − j + 1)!j(j − 1)!
+

k!(k − j + 1)

(k − j + 1)(k − j)!j!

=
k!j + k!(k − j + 1)

(k − j + 1)!j!

=
k![j + k − j + 1]

(k − j + 1)!j!

=
k![k + 1]

(k − j + 1)!j!

=
(k + 1)!

(k + 1− j)!j!

=

(
k + 1

j

)
.

This completes the proof of Pascal’s Identity (which is called Pascal’s Identity
because (20.3) exactly states how to form Pascal’s Triangle: the jth entry in
the (k + 1)st row is found by adding the (j − 1)st and jth entries in the kth

row.)
It is worthwhile to note why this result is called Pascal’s Identity. Recall

that the entries of Pascal’s Triangle are, in fact, the binomial coefficients. The
method one uses to generate the entries in the triangle is exactly given by this
identity (to get the jth entry in the (k + 1)st row, add the (j − 1)st and the
jth entry in the kth row).

Now that we are equipped with this identity, we may prove the Binomial
Theorem. Our proof is by induction on n.

Proof (of the Binomial Theorem).
(Base Step) Let n = 0. Then

1 = (a+ b)0 =
0∑

k=0

(
n

k

)
an−kbk =

(
0

0

)
a0b0 = 1.

Hence, the statement we are trying to prove is true for the base case n = 0.
(Inductive Step) Assume for k ≥ 0 that

(a+ b)k =
k∑

m=0

(
k

m

)
ak−mbm (this is the induction hypothesis).

6Do you see why it is called Pascal’s Identity? The answer will come after the proof.

276 An Introduction to Combinatorics

Then

(a+ b)k+1 = (a+ b)(a+ b)k

= (a+ b)

k∑
m=0

(
k

m

)
ak−mbm (by the induction hypothesis)

= a

(
k∑

m=0

(
k

m

)
ak−mbm

)
+ b

(
k∑

m=0

(
k

m

)
ak−mbm

)

=

k∑
m=0

(
k

m

)
ak−m+1bm +

k∑
m=0

(
k

m

)
ak−mbm+1

= ak+1 +

(
k

1

)
akb1 + · · ·+

(
k

k

)
abk +

(
k

0

)
akb1

+ · · ·+
(

k

k − 1

)
abk + bk+1

by combining like terms and using Pascal’s Identity

=

(
k + 1

0

)
ak+1+

(
k + 1

1

)
akb1 + · · ·+

(
k + 1

k

)
abk+

(
k + 1

k + 1

)
bk+1

=
k+1∑
m=0

(
k + 1

m

)
ak+1−mbm.

Since we have shown that the statement being true for the integer k implies the
statement is true for k+1, the Principle of Mathematical Induction establishes
the Binomial Theorem.
This completes the proof.

A Combinatorial Proof of the Binomial Theorem:

Proof. This proof involves counting and is absolutely soul-inspiringly beautiful
(unlike proofs by Induction, which, we remind the reader, are soulless and
boring).

Consider multiplying (a+ b)n =

n factors︷ ︸︸ ︷
(a+ b)(a+ b) · · · (a+ b). The only way to

get an an term when we multiply is to choose an a from each of the n factors
which is the same as choosing no b′s. This can be done in

(
n
0

)
many ways.

Likewise, to get an an−1b term, we would choose exactly one b when from
then n binomials when multiplying and the remaining n − 1 choices are a′s.
This can be done in

(
n
1

)
ways. And so on. Thus

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

This completes the proof.

The Binomial Theorem and Binomial Coefficients 277

20.3.4 Another Counting Argument

Since that experience was so wonderful, we offer another Combinatorial proof.
Counting7 can also be used to establish the following:

Theorem 20.3.4 (The Chairperson Identity). For a nonnegative integer n,

n∑
k=1

k

(
n

k

)
= n2n−1.

Proof. The left hand side counts the total number of ways to choose a com-
mittee of size 1 through n with chair by counting the number of ways to first
form a committee of size k then select a chair from the k committee members.

The right hand side counts the same thing by first choosing a chair and
then filling the arbitrary-sized committee.

Note that not only are counting arguments elegant, they offer insight into
why the result is what it is; and knowing the counting argument makes it very
easy to remember the result.

20.3.5 The Multinomial Theorem

Since we have presented the Binomial Theorem, we also offer its extension,
the Multinomial Theorem

The Binomial Theorem is, as the name suggests, a result regarding bino-
mials. If having two terms is fun, then having three or more can only be more
fun.

First, some notation:

Notation (Multinomial Coefficient). Let n, n1, n2 . . . , nm be nonnegative in-
tegers where n1 + n2 + · · ·+ nm = n. Then we define the following symbol(

n

n1, n2, . . . , nm

)
:=

n!

n1!n2! · · ·nm!
.

(Of course this looks a lot like a binomial coefficient, but we will where it gets
its name in the next theorem.)

Note that a multinomial coefficient with two terms reduces to a binomial
coefficient; that is(

n

r, n− r

)
:=

n!

r!(n− r)!
=

(
n

r

)
=

(
n

n− r

)
. (20.4)

Equipped with the notation we may state

7We restate that if one feels that counting arguments are not formal enough, then please
feel free to make the argument by introducing some bijections.

278 An Introduction to Combinatorics

Theorem 20.3.5 (The Multinomial Theorem). For and nonnegative integer
n and any positive integer m,

(x1 + x2 + · · ·+ xm)n =
∑

n1+n2+···+nm=n

(
n

n1, n2, . . . , nm

)
x1

n1x2
n2 · · ·xm

nm .

As with the Binomial Theorem, the Multinomial Theorem may be proven
using either induction or a counting argument. Moreover, the Multinomial
Theorem may be used to quickly expand multinomials just as the Binomial
Theorem may be used to easily expand binomials.

Example 20.3.6. By the Multinomial Theorem,

(x+ y + z)2 =

(
2

2, 0, 0

)
x2 +

(
2

1, 1, 0

)
xy +

(
2

1, 0, 1

)
xz +

(
2

0, 2, 0

)
y2

+

(
2

0, 1, 1

)
yz +

(
2

0, 0, 2

)
z2

= x2 + 2xy + 2xz + 2y2 + 2yz + z2.

Note that in this example determining the number of possible terms in the
expansion of the multinomial is a nice application of counting 2-combinations
with repetition (Theorem 20.2.20) from a set of 3 objects (the set {x, y, z}).
Thus the final number of terms is

(
3+2−1

2

)
=
(
4
2

)
= 6.

20.4 Counting When Objects Are Indistinguishable

We now consider the case when we have some objects that are the same.

20.4.1 Permutations with Indistinguishable Objects

Example 20.4.1. In how many ways can the letters of Engineer be rear-
ranged?

Solution. Note that there are 5 distinct letters e,n,g,i,r with the 3 E’s being
indistinguishable from each other as are the 2 N’s. We have 8 spots to fill and
will proceed in the order the letters appear (our choice of the order in which
we place the letters does not matter... you are encouraged to check this for
yourself). Starting with the E’s, we have

(
8
3

)
places we may place them. Thus

there remain 5 positions where we can place the 2 N’s, which can be done
in
(
5
2

)
ways. It follows that the remaining letters can respectively be placed

in
(
3
1

)
,
(
2
1

)
, and

(
1
1

)
many ways. Thus, by the Multiplication Principle, the

Counting When Objects Are Indistinguishable 279

possible number of arrangements of Engineer is(
8

3

)
·
(
5

2

)
·
(
3

1

)
·
(
2

1

)
·
(
1

1

)
=

8!

3!5!
· 5!

2!3!
· 3!

1!2!
· 2!

1!1!
· 1!

1!0!
=

8!

3!2!1!1!1!

=

(
8

3, 2, 1, 1, 1

)
.

■

Generalizing the argument used the example establishes the following the-
orem:

Theorem 20.4.2 (Permutations with Indistinguishable Objects). Given
a collection of n objects of k indistinguishable types, the number of r-
permutations of the n objects where there are n1 indistinguishable objects of
type 1, n2 indistinguishable objects of type 2, . . . , and nk indistinguishable
objects of type k is

(
n

n1,n2,···nk

)
.

You can now see why we waited until after introducing the Multinomial
Theorem as multinomial coefficients are used to count permutations with in-
distinguishable objects. The classical example of this problem is, as we saw
above,

Example 20.4.3. How many distinct arrangements are there of the word
Tennessee?

Solution. Here we have n = 9 and k = 4; that is, we have 9 total letters and
4 sets of indistinguishable letters. Given there are 4 E’s, 2 each of N and S,
and 1 T, by Theorem 20.4.28, the number of distinct rearrangements of the
letters is (

9!

4!2!2!1!

)
= 3,780.

■

The previous example was the same as the first, thus shedding little light
on the different ways in which this brand of questions can be asked. Let us
then consider a slightly different arrangement of the problem.

Example 20.4.4. A strand of Christmas lights has 4 red bulbs, 3 green bulbs,
5 yellow bulbs, and 2 blue bulbs. How many different arrangements of lights
are possible for this strand?

Solution. As what matters is the color of the bulbs, lights of the same color
are regarded as indistinguishable. Thus there are(

14

4, 3, 5, 2

)
= 2,522,520

possible arrangements of the lights. ■

8It is common to see Theorem 20.4.2 referred to as the Multinomial Theorem. It is
possible to make a formal connection between the two, though an adequate amount of
prayer and meditation will also reveal the relationship.

280 An Introduction to Combinatorics

TABLE 20.1
Summary of Permutations and Combinations

Order? Type Repetitions? Objects Formula Example

Indistinguishable?

Yes r-permutation No No n!
(n−r)!

20.2.12

No r-combination No No
(n
r

)
=

(n
n−r

)
20.2.15

Yes r-permutation Yes No nr 20.2.17

No r-combination Yes No
(n+r−1

r

)
=

(n+r−1
n−1

)
20.2.19

Yes permutation No Yes
(n
n1,n2,···nr

)
20.4.1

20.4.3

20.4.2 Summary of Basic Counting Techniques

A summary of basic counting techniques is offered in Table 20.1 with a decision
tree provided in the following diagram. When considering which technique to
use to count, we must first ask if the order in which we select the objects
matters or not. After this, we must then decide if objects can be repeated or
if there are any objects that are indistinguishable. On this matter, it is im-
portant to understand the difference between what is meant by repetition of
objects and as compared to when we have indistinguishable objects. In Exam-
ple 20.2.17, a selected ping-pong ball is returned to the urn and can be chosen
again but the individual ping-pong balls are very much distinguishable. In
Example 20.4.3, though, we do not return a selected “s” to possibly be chosen
again, but, rather, there is another “s” available that is indistinguishable from
the first “s”.

Order Matter?

Repetition?

Indistinguishable? (
n
r

)N

nested combinationsY
N

Indistinguishable? (
n+r−1
n−1

)N

DNEY

Y

Combinations

N

Repetition?

Indistinguishable?
n!

(n−r)!

N

(
n

n1,n2,...,nr

)
Y

N

Indistinguishable?

nr
N

DNEY

Y

Y

Permutations

The Pigeonhole Principle 281

20.5 The Pigeonhole Principle

Though not necessary for our pursuits, no introduction to Combinatorics
would be complete without introducing the following beautifully simple yet
elegant principle. Though the Pigeonhole Principle is may not appear very
sophisticated, it is quite useful and its applications are sometimes surprising.

Theorem 20.5.1 (The Pigeonhole Principle). Let k be a positive integer. If
k+1 or more objects are placed into k boxes, then at least one box has two or
more of the objects.

The Pigeonhole Principle gets its name from the days of messages being
delivered by carrier pigeons with the pigeons playing the role of the objects
and their cells the boxes. It sometimes is also called the Dirichlet Drawer
Principle after the 19th century German mathematician G. Lejeune Dirichlet
(Dirichlet was born in Belgium) who was fond of using this principle in his
work. Though Dirichlet’s name is attached, the principle was used in France
in the 17th century [48] (see Exercise 20.18). The proof of Theorem 20.5.1
will follow directly from the proof of the Generalized Pigeonhole Principle
(Theorem 20.5.6) with N = k + 1.

Example 20.5.2. In a class of 13 students, at least two people share a birth-
day in the same month.

Example 20.5.3. If Lincoln strikes out 7 batters in 6 innings pitched, there
must be at least one inning in which he struck out 2 or more batters.

Example 20.5.4. Let (A,B), (C,D), (E,F), (G,H), and (I, J) be distinct
points in the standard Cartesian x − y plane with integer coordinates. Show
that at least one line segment joining pairs of points has a midpoint that has
integer coordinates.

Solution. The midpoint will have integer coordinates if the parities (even/odd)
of the x coordinates and the y coordinates are respectively the same. By the
Multiplication Principle (Theorem 20.2.1), there are 4 possible combinations
of parities and as there are 5 points, by the Pigeonhole Principle there must
be at least one pair of points whose x and y coordinates have parities that
agree, thus the midpoint of the line segment joining them must have integer
coordinates. ■

Example 20.5.5. Let n be a positive integer. Show that n has a multiple
whose digits are all 0 or 1.

Solution. Consider the n + 1 integers 1, 11, 111, . . . ,

n+1 digits︷ ︸︸ ︷
111 · · · 1. Note that in

dividing each of these by n, there are only n possible remainders. But as there
are n + 1 numbers, by the Pigeonhole Principle there are two numbers that

282 An Introduction to Combinatorics

have the same remainder when doing this division. Subtracting the larger of
these two numbers by the smaller gives a number that has only 0’s and 1’s as
its digits and its remainder when divided by n must be 0 (note that not only
is the number just made up of 0’s and 1’s, we have really shown it is a string
of 1’s followed by a string of 0’s). ■

The Pigeonhole Principle can be generalized, but requires some notation.

Notation (Ceiling Function). Let r be a real number. Then the ceiling of r
is

⌈r⌉ = the smallest integer k ≥ r.

We have ⌈π⌉ = 4 and ⌈− 5
2⌉ = −2.

Theorem 20.5.6 (Generalized Pigeonhole Principle). Let N and k be positive
integers. Then if N objects are placed into k boxes, there is at least one box
with ⌈N/k⌉ objects in it.

Proof. Suppose for contradiction that no box contains more than ⌈N/k⌉. Then
the total number of objects is

N = k(⌈N/k⌉ − 1) < k([N/k + 1]− 1) = N

which is contradiction since N ̸< N .

Note that the proof used the inequality ⌈N/k⌉ < N/k + 1 (see Exercise
20.16).

Example 20.5.7. Since ⌈54/12⌉ = 5, by the Generalized Pigeonhole Princi-
ple, any class of 54 students must have at least 5 students that have a birthday
in the same month.

Example 20.5.8. A standard deck of cards contains 52 cards distributed
equally among four suits: hearts, diamonds, clubs, and spades. a) How many
cards must an individual draw to guarantee that their hand has 3 cards from
the same suit? b) How may cards must be drawn to guarantee the hand has 3
spades?

Solution. a) By the Generalized Pigeonhole Principle, we need an integer N
such that ⌈N/4⌉ > 3 and the smallest such N is 9. b) As the we have selected
a specific box (suit), the Generalized Pigeonhole Principle does not apply. A
worst-case scenario application is needed, and it is possible for the player to
draw all 13 each of the hearts, diamonds, and clubs before getting any spades,
thus the answer is 13 + 13 + 13 + 3 = 42. ■

Exercises 283

20.6 Exercises

Exercise 20.1. A password for an account on a particular website must be 8–
16 characters long and contain at least one capital letter, at least one lowercase
letter, and one of the following four symbols: @, !, $, *. Furthermore, as
long as these conditions are met the password can contain any combination
of letters (lower or uppercase), numbers, or the above special symbols. How
many possible passwords are there for this account?

Exercise 20.2. How many password combinations from the previous question
are removed if we know the user of the account in question only uses a capital
letter as the first character and only uses a single special character?

Exercise 20.3. How many ways can a function f map a domain D to a range
R if D has 10 elements, R has 20 elements, and f is injective?

Exercise 20.4. How many ways can a function f map a domain D to a range
R if D has 10 elements, R has 20 elements, and no element in R is mapped
to by more than 2 elements of D?

Exercise 20.5. How many ways can a function f map a domain D to a range
R if D has 10 elements, R has 5 elements, and no element in R is mapped to
by the same number of elements in D?

Exercise 20.6. Partition the set {A,B,C,D,E} into 4 subsets in a way such
that for all subsets s1, s2, |s1| ≠ |s2|, or prove you cannot.

Exercise 20.7. How many ways can a function f map a domain D to a range
R if D has 9 elements, R has 5 elements, and no element in R is mapped to
by the same number of elements in D?

Exercise 20.8. Show that the number of submatrices (including the empty
submatrix) of an m× n matrix is 2m2n.

Exercise 20.9. Show that the number of square submatrices (including the
empty submatrix) of an m× n matrix is(

M

k

) N∑
i=0

(
N

i

)2

where M = max{m,n}, N = min{m,n}, and k = |m− n|.

Exercise 20.10. Use a counting argument to prove

n∑
k=0

(
n

k

)2

=

(
2n

n

)
where

(
2n
n

)
are the central binomial coefficients from Pascal’s Triangle.

284 An Introduction to Combinatorics

Exercise 20.11. If m = n in Exercise 20.9 (i.e. the matrix is square), then
by Exercise 20.10 there are

(
2n
n

)
square submatrices of an n×n matrix. Calcu-

late the first 10 terms of the sequence formed by these values:
(
0
0

)
,
(
2
1

)
,
(
4
2

)
,

Compare your answer with the appropriate sequence in the Online Encyclo-
pedia of Integer Sequences [53].

Exercise 20.12. In how many different ways can the letters of Optimization
be arranged?

Exercise 20.13. In how many different ways can the letters of Mathematics
be arranged?

Exercise 20.14. Write a proper proof for Theorem 20.4.2.

Exercise 20.15. Prove the Pigeonhole Principle (Theorem 20.5.1) without
using the Generalized Pigeonhole Principle (Theorem 20.5.6). [Hint: mimic
the proof of Theorem 20.5.6].

Exercise 20.16. Prove that for real numbers m and n with n ≠ 0 that ⌈mn ⌉ <
m
n + 1. [Hint: there are two cases: m

n is an integer and m
n is not an integer.]

Exercise 20.17. Prove that no algorithm can list all of the subsets of a given
set S in polynomial time.

Exercise 20.18. (From [48]) French writer Pierre Nicole wrote of 17th cen-
tury Paris having over 800, 000 residence and (as believed at the time) no one
had more than 200, 000 hairs on their head. Assuming that these numbers are
correct and that no Parisian at this time was completely bald, argue that there
had to be at least two Parisians with the same number of hairs on their head.
Then use the Generalized Pigeonhole Principle (Theorem 20.5.6) to determine
the minimum number of Parisians having the same number of hairs on their
head.

21

An Introduction to Graph Theory

Though technically a subset of Combinatorics, Graph Theory is deep enough
to be regarded as its own subject. It also has an incredible propensity to
be useful... especially in today’s world with the internet (in particular, page
rankings in web searches is one application), shipping of products (which has
exploded with online purchasing), and even Machine Learning. It is used in
Chemistry, Biology, Physics, Economics, telecommunication, social behavioral
studies, . . . anywhere there is a network.

21.1 Basic Definitions

Though we have seen many graphs in our study of mathematics, the graphs
in Graph Theory have a particular meaning. As is almost always the case in
this subject, a picture does more than words.

Example 21.1.1. Let G and D be the following graphs:

b c

a

d

Graph G

f g

e

h

Graph D

What makes G a graph in Example 21.1.1 is that it consists of vertices
and edges; that is, the nodes and arcs connecting the nodes. Thus

Definition 21.1.2 (Graph). A graph G = (V,E) is an order pair of sets
where V is nonempty and finite and is the set of vertices and E ⊂ V × V is
the set of edges.

DOI: 10.1201/9780367425517-21 285

https://doi.org/10.1201/9780367425517-21

286 An Introduction to Graph Theory

This is one of the best definitions in all of mathematics in that it has many
important subtleties built in it. It may appear very simple, yet an entire area
of mathematics is built on this definition (and note that the Handbook of
Graph Theory is 1630 pages long!1).

In exploring the buried elements of Definition 21.1.2, first note that the
vertex set is always nonempty; that is, any graph will always have at least one
vertex. The vertex set for the graph G in Example 21.1.1 is V (G) = {a, b, c, d}.
As the edge set E is a subset of the Cartesian product of V with itself, it is
allowed to be empty, thus it is possible for a graph to have no edges (such a
graph is called an empty graph). Moreover, by this definition we identify an
edge by its vertices. For example, ab is an edge in G. Note that technically
we should write this edge as (a, b) since it is stated to be an ordered pair,
but it is standard to avoid such cumbersome notation. You may also notice
that we are cheating a bit here; (a, b) is an ordered pair, but we are going to
ignore the order for our graph G in the example. Thus in G, the edge set is
E(G) = {ab, ac, ad, bc, bd, cd}. There are times we care about a direction on
the edges as in the graph D in Example 21.1.1. When, as in D, the orientation
(direction) of the edge matters, the graph is called a directed graph or digraph
for short. In digraphs, the initial vertex of the directed edge is listed first and
the terminal vertex second. Thus D has vertex set V (D) = {e, f, g, h} and
edge set E(D) = {fe, fh, gf, ge, gh, he, hg}.

Note also that since the edge set is a set, repetition of elements is not
permitted. Thus, an undirected graph can only at most one edge between
vertices and a directed graph can have at most one directed edge between
vertices (with both directions permitted). Graphs that havemultiedges, that is
multiple edges between vertices, are called multigraphs and are not considered
here2. Observe that in D, directed edges gh and hg are not multiedges since
they have different orientations. The number of vertices of a graph is called
the order of the graph and is denoted by n where the number of edges of a
graph is called the size and is denoted by m. In Example 21.1.1, G is a graph
of order 4 and size 6 where D is a digraph of order 4 and size 7.

From Definition 21.1.2 we also get the very important fact that where we
draw the vertices and how we draw the edges does not matter3.

1We are being a little disingenuous here. The Handbook of Graph Theory does include the
additional topics of weighted graphs, directed graphs, multigraphs, hypergraphs, and graph
colorings, but these all build on Definition 21.1.2. Nonetheless, it is absolutely impressive
that such a wealth of Mathematics comes from such a simple definition.

2Graph Theory is a relatively young area of Mathematics and, as such, definitions and
notation are not yet completely standard and may vary by author. Most Graph Theorists
mean by “graph” the definition that we have stated (with conveniently ignoring the “order”
in “ordered pair”). As it is acceptable to consider a multigraph as a graph (thus requiring
the edge set to be a multiset), some authors refer to what we have called a graph as a simple
graph.

3There are, of course, a few exceptions, such as the important notion of planar graphs
as well as the Geometric Heuristic for the Traveling Salesperson Problem.

Basic Definitions 287

Highlight 21.1.3. All that matters in a graph is that there are vertices and
that there either is an edge between a pair of vertices or there is not.

Some terminology will be useful. Graphs that have only a few edges are
commonly called sparse graphs whereas a graph with many edges is referred
to as a dense graph. Of course, these are relative terms how many of the total
possible edges we have, but they do get used often. Vertices that are joined
by an edge are said to be adjacent . In Example 21.1.1, every pair of vertices
in graph G is adjacent. When an edge exists, it is said to be incident with
each of the vertices that determine it. Again, in G, edge bd is incident with
vertex b as well as vertex d. The relationship works both ways and we may
also say that vertex b is incident with edge bd. Adjacent vertices are said to
be neighbors and the collection of all neighbors of a given vertex v is called
the neighborhood of v and is denoted NG(v) or just N(v) when the graph G
is understood. In G, N(a) = {b, c, d}. The number of neighbors of a vertex is
called the degree of the vertex, thus degG(a) = deg(a) = 3. The sum of the
degrees of all the vertices in a graph is called the total degree of the graph; in
other words, if G is a graph with vertex set V ,∑

v∈V (G)

deg(v) = the total degree of G

In digraphs, the notion of the degree of a vertex is replaced by the in-degree
and the out-degree. Let u be a vertex in a digraph D. The in-neighborhood
of u is

N−(u) := {v ∈ V (D)|vu ∈ E(D)};

that is, the collection of vertices v in D such that edge vu is a directed edge
into u. It will be no surprise that the out-neighborhood of u is4

N+(u) := {v ∈ V (D)|uv ∈ E(D)};

that is, the collection of vertices v in D such that edge uv is a directed edge
out of u. We then define the in-degree of a vertex u to be deg−(u) = |N−(u)|
and the out-degree of a vertex u to be deg+(u) = |N+(u)|. We also have
deg(u) = deg−(u) + deg+(u); that is the degree of a vertex in a digraph is its
total degree: the sum of its in-degree and out-degree.

A graph H is said to be a subgraph of a graph G if both V (H) ⊆ V (G) and
E(H) ⊆ E(G). If either of the subset relations is proper, that is if V (H) ⊊
V (G) or E(H) ⊊ E(G), then H is said to be a proper subgraph of G. Further,
H is a spanning subgraph of G if it is a subgraph of G and satisfies V (H) =
V (G). Lastly, suppose H is a subgraph of G with the property that for all
u, v ∈ V (H), u and v are adjacent in H if and only if u and v are adjacent in

4The superscripts “+” and “−” for the directed neighborhoods are borrowed from net-
work flows (see Chapter 22). If one considers a flow in a network, the “+” edges are found
by gazing forward in the network whereas the “−” edges are found by looking backward in
the network.

288 An Introduction to Graph Theory

G. When meeting these conditions, H is an induced subgraph of G. In other
words, an induced subgraph inherits all the appropriate edges from its parent
graph.

Example 21.1.4. (Graph G and different subgraphs.)

G proper subgraph of G spanning subgraph of G induced subgraph of G

The last notion we consider in our introduction is the idea of sameness. As
emphasized in Highlight 21.1.3, where or how we draw the vertices and edges
does not matter. This can be formally addressed with the mathematical con-
cept of an isomorphism, but (as previously stated regarding Graph Theory) a
picture is better than a definition. In the Example 21.1.5, graphs G1 and G2

are equal as V (G1) = V (G2) and E(G1) = E(G2); that is, equal graphs have
the same vertex and edge sets. Graph G3 is not equal to either of the other
two graphs as it has different vertex and edge sets (vertex f is not in either
of V (G1) or V (G2)), but if we relabel vertex f in G3 as vertex a in graph G∗

3,
then we would have V (G1) = V (G2) = V (G∗

3) and E(G1) = E(G2) = E(G∗
3).

Since G3 is just a relabelling of a graph that is equal to G1 and G2, we say
G3 is isomorphic to both G1 and G2.

Example 21.1.5. (Three isomorphic graphs.)

b c

a

d

Graph G1

b c

a d

Graph G2

b c

f d

Graph G3

Special Graphs 289

21.2 Special Graphs

21.2.1 Empty Graphs and the Trivial Graph

By definition, a graph must have at least one vertex but it does not have to
have any edges. A graph on n vertices with an empty edge set is called an
empty graph of order n. The simple graph consisting of only a single vertex is
referred to as the trivial graph.

21.2.2 Walks, Trails, Paths, and Cycles

There are different types of journeys from one vertex to another. A walk in a
graph is a sequence of adjacent vertices v0, v1, v2, . . . , vn and each edge vi−1vi.
A trail is a walk that does not repeat an edge and a path is a walk that does
not repeat a vertex (thus each path is necessarily a trail). The number of edges
in a walk, trail, or path is said to be the length of the walk, trail, or path.
Again using G from Example 21.1.1, bdababc is a walk of length 6, bdabc is a
trail of length 4, and bdc is a path of length 2.

A path on n vertices is denoted Pn. Example 21.2.1 illustrates the first 5
paths.

Example 21.2.1. (Paths of order n = 1, 2, 3, 4, 5.)

P1 P2 P3 P4 P5

Adding an edge from the last vertex of a path to the first vertex creates a
cycle. As multiedges are not permitted, there can be no cycle of order 2, thus
cycles are only defined for 3 or more vertices. A cycle of order n is denoted Cn

and the first 5 cycles are shown in Example 21.2.2 with C6 and C7 intentionally
drawn a little differently. Cycles are involved in the very important Traveling
Salesperson Problem (Chapter 25).

Example 21.2.2. (Cylces of order n = 3, 4, 5, 6, 7.)

C3 C4 C5 C6 C7

The cycle C3 is often very useful in mathematics and is usually referred to
as a triangle.

290 An Introduction to Graph Theory

a b

c

d

e

G

FIGURE 21.1
A cycle and Hamiltonian cycle.

Some special paths and cycles will be important in later work.

Definition 21.2.3 (Hamiltonian Path, Hamiltonian Cycle, Hamiltonian
Graph). A path the visits every vertex of a graph G is called a Hamiltonian
path. Likewise, a cycle that passes through every vertex of a graph is called a
Hamiltonian cycle or a tour.

A graph that contains a Hamiltonian cycle is said to be a Hamiltonian
graph.

We will note that tour is most commonly used but that Graph Theorist
tend to favor the term Hamiltonian cycle. Optimal tours will be the focus of
our study when answering the Traveling Salesperson Problem (Chapter 25).

In Figure 21.1, a, b, c, a is a cycle in G where a, b, c, d, e, a is a Hamiltonian
cycle.

21.2.3 Trees

The previous section introduced the important notion of cycles. Cycles are
incredibly relevant in Optimization as are graphs that have no cycles.

Definition 21.2.4 (tree, forest, leaf). A connected5, acyclic graph is called a
tree and a collection of trees is called a forest. A vertex of degree 1 in a tree
is called a leaf.

5Connected means exactly what it should mean. Formally, a connected graph is one
where there always exits some path between any pair of vertices. Connectivity is addressed
in Section 21.3.

Special Graphs 291

Some examples of trees are shown in Example 21.2.5.

Example 21.2.5. [Various trees.]

T1 T2 T3

Notice that trees are, in a sense, optimal. In a tree, there are as many
edges as we can have between existing vertices without having a cycle.

Before moving on, we will include a determining characteristic of a tree.

Theorem 21.2.6. A graph T is a tree if and only if every pair of vertices in
T are connected by a unique path.

We will not write the details of the proof, but both directions rely on the
fact that trees are acyclic. A proof can be found in [9].

Though it is bad form, we will also note that future Theorem 21.3.5 has a
helpful corollary.

Corollary 21.2.7. Every nontrivial tree has at least two leaves.

We will prove the following useful result, though.

Theorem 21.2.8. Let Tn be a tree of order n. Then Tn has size n− 1.

Proof. The proof will be on the order of an arbitrary tree. As T1 has size 0,
the base case is easily established. For the induction hypothesis, suppose any
tree of order n has size n−1 and consider a tree T of order n+1. By Corollary
21.2.7, T has at least 2 leaves. Let v be on of the leaves and consider T − v
(the graph T less vertex v and the edge incident with v). Since T − v is a tree
of order n, by the induction hypothesis, T −v has size n−1. Adding back leaf
v and its only incident edge gives T which then has n− 1 + 1 = n edges.

21.2.4 Complete and Bipartite Graphs

We have mentioned that a graph will always have at least one vertex but may
be void of edges. Such a graph is called an empty graph and empty graphs
exist of every order. The complement of an empty graph – one in which every
pair of distinct vertices is adjacent – is called a complete graph. A complete
graph of order n is denoted Kn and the first few complete graphs are shown
in Example 21.2.9.

292 An Introduction to Graph Theory

Example 21.2.9. (Complete graphs Kn of order n = 1, 2, 3, 4, 5, 6.)

K1 K2 K3 K4 K5 K6

We have seen some of these graphs before. Notice that K1 = P1, K2 = P2,
and that K3 = C3. An easy counting argument gives that the size of Kn is(
n
2

)
since every edge is determined by its vertices.

Definition 21.2.10 (Bipartite Graph). A graph G is said to be bipartite if
the vertex set of G can be partitioned into two disjoint sets U and V (called
partite sets) such that no two vertices belonging to the same set are adjacent.

To show a graph is bipartite, merely rewrite it making the partite sets
clear as in the following example:

Example 21.2.11. (Showing a graph to be bipartite.)

a b c

d

efg
a

c

f

b

d

e

g

It is not hard to see that any tree is bipartite. Also, C4 and C6 as well as
K2 are bipartite whereas C3, C5, and C7 are not bipartite. In fact, we have

Cn is

{
bipartite if n is even and

not bipartite if n is odd.

Moreover, it is the case a graph G is bipartite if and only if it does not contain
an odd cycle (a proof of this can be found in any Graph Theory text; see [9],
for example).

Our last class of special graphs combines the previous two. A complete
bipartite graph is a graph G whose vertex set can be partitioned into two
disjoint sets U and V such that uv is an edge in G if and only if u ∈ U and
v ∈ V ; that is, every edge in G has one of its vertices in U and the other in
V . The notation for a complete bipartite graph is Ks,t.

Vertex and Edge Cuts 293

Example 21.2.12. (Complete bipartite graph K3,4.)

Since two partite sets is fun, more partite sets must be more fun. The
notion of a bipartite graph may be extended to a multipartite graph where the
definition is extended to G is a k-partite graph if its vertices can be partitioned
into k disjoint nonempty sets such that no two vertices in the same partite set
are adjacent. A complete multipartite graph is exactly what it should be and
uses the same notation as a complete bipartite graph.

Example 21.2.13. (Complete tripartite graph K1,2,3.)

21.3 Vertex and Edge Cuts

Now we consider the useful notion of removing vertices and edges from a
graph. First, the notion of connectivity is introduced.

294 An Introduction to Graph Theory

21.3.1 Graph Connectivity

Though previously alluded to in our discussion of trees, we now offer a proper
definition of what it means for a graph to be connected.

Definition 21.3.1. (Connectivity in a Graph) A graph G is connected if for
every pair of distinct vertices u and v in G there exists a u− v path. A graph
that is not connected is said to be disconnected.

Note that the u − v path need not be unique; many may exist, but as
long as there is one between every pair of distinct vertices, the definition is
satisfied. As well, the trivial graph on 1 vertex is regarded as being vacuously
connected.

Example 21.3.2.

Connected graph G1 Disconnected graph G2

C1 C2

The connected parts of the disconnected graph G2 are referred to as com-
ponents. To be precise, a component of a graph is a maximal connected sub-
graph. The disconnected graph G2 in the example has two components C1

and C2 where any connected graph has only one component.

21.3.2 Notation for Removing a Vertex or Edge from a
Graph

Let G be a graph with vertex set V = V (G) and edge set E = E(G). If e ∈ E,
then by G− e we mean the graph that results from removing edge e from G.
Similarly, if u ∈ V , then by G−u we mean the graph resulting from removing
vertex u from G as well as any edges of G that are incident to u (the latter
must occur as, by definition, every edge needs two vertices). As well, we may
remove sets of vertices or edges from a graph and the same notation is used.

Vertex and Edge Cuts 295

These notions are illustrated in the following example:

Example 21.3.3.

C5

e

u

C5 − e C5 − u

Now that we understand connectivity and removing vertices and edges
from a graph, we may explore vertex and edge cuts.

21.3.3 Cut Vertices and Vertex Cuts

We will begin our exploration of cuts by considering when the removal of a
single vertex disrupts a network.

Definition 21.3.4 (Cut Vertex). A vertex v in a connected graph is called a
cut vertex if G− v is disconnected.

In the following figure, v is a cut vertex of the connected graph G, and –
in fact – is the only cut vertex of G.

v

Graph G

Graph G− v

296 An Introduction to Graph Theory

Note that any cycle Cn has no cut vertices. We also have the following
useful result.

Theorem 21.3.5. Every nontrivial connected graph contains at least two
vertices that are not cut vertices.

Proof. Suppose G is a nontrivial connected graph and let P be a longest path
in G. Label the end vertices of P u and v so that P is a u− v path. We claim
that u and v are not cut vertices. To show this, suppose for contradiction that
u is a cut vertex of G. Then G − u is disconnected and therefore contains
at least two components. Let w be the vertex adjacent to u in the path P .
Since u is a cut vertex, the w− v subpath P ′ of P must be contained in some
component of G−u, say G1. Let G2 be another component of G−v and since
v was a cut vertex of G, v must be adjacent to some vertex x from G2. This
results in an x− v path in G which is longer than P which is a contradiction.
A similar argument also shows that v cannot be a cut vertex.

The idea of the previous proof can be illustrated in the following diagram
with the solid edges denoting path P . Note there may be other vertices and
edges in G1 and G2.

x

G2

v

w

. . . v

G1

Moving beyond a cut vertex, it may be the case that to disrupt the con-
nectivity of a graph we need to remove more than one vertex. We thus extend
the definition to a collection of vertices.

Definition 21.3.6. (Vertex Cut) Let G be a noncomplete graph with vertex
set V = V (G). Any S ⊆ V such that G−S is disconnected is called a vertex-
cut of G.

Note that in this definition we need the condition that G is not complete,
else removing any vertices and their incident edges will result in a graph that
is still connected (in fact, still complete!).

A vertex cut of minimum cardinality is known as a minimum vertex cut .
The cardinality of a minimum vertex cut of a graph G is called the vertex
connectivity (or just the connectivity) of G and is denoted κ(G). κ(G) is, thus,
the smallest number of vertices of G whose removal results in a disconnected
graph or the trivial graph. Since a complete graph of order n does not contain
a vertex cut, we have κ(Kn) = n − 1. It follows that a trivial bound on the
connectivity of a graph G of order n is 0 ≤ κ(G) ≤ n− 1. We can do a little
better for a bound, but need another definition first.

Vertex and Edge Cuts 297

Definition 21.3.7. (k-connected graph) A graph G is k-connected if κ(G) ≥
k ≥ 1.

Thus a graph is k-connected if removing fewer than any of k vertices does
not yield a graph that is disconnected or trivial. Clearly, if G is k-connected,
then it is k∗-connected for each k∗ ∈ {1, 2, . . . , k}.

Many bounds involving k-connectivity are known but we will only present
the following:

Theorem 21.3.8. Let G be a graph of order n with k an integer such that
1 ≤ k ≤ n− 1. If

δ(G) ≥
⌈
n+ k − 2

2

⌉
,

then G is k-connected.

Proof. Suppose for contradiction that the theorem is false; that is, there exists
a graph G of order n such that

δ(G) ≥
⌈
n+ k − 2

2

⌉
but G is not k-connected. Since it is possible to remove less than k vertices
and have the resulting graph be disconnected or trivial, G cannot be complete.
Moreover, since G is not k-connected, there exists a vertex-cut U of G where
|U | = l < k, namely l ≤ k − 1 ≤ n − 2. Hence we are not removing enough
vertices to make G − U trivial. Further, since U is a vertex-cut, G − U is
disconnected and has order n− l.

Since G−U is nontrivial and disconnected, it has at least two components.
Let C∗ be a component of G − U or smallest order, say n∗. Since the n − l
vertices of G−U are in at least two components and since C∗ is a component
of G−U , it follows from the Pigeonhole Principle that n∗ ≤ ⌊(n− l)/2⌋. Let v
be any vertex of C∗. Since G− U is disconnected, its only possible neighbors
in G are the vertices in U and C∗. Thus

δ(G) ≤ deg v ≤ l + (n∗ − 1) (21.1)

≤ l +

⌊
n− l

2

⌋
− 1 (21.2)

≤
⌊
2l

2

⌋
+

⌊
n− l

2

⌋
−
⌊
2

2

⌋
(21.3)

≤
⌊
2l

2
+

n− l

2
− 2

2

⌋
(21.4)

≤
⌊
n+ l − 2

2

⌋
(21.5)

≤
⌊
n+ (k − 1)− 2

2

⌋
(21.6)

298 An Introduction to Graph Theory

≤
⌊
n+ (k − 2)− 1

2

⌋
(21.7)

<

⌈
n+ (k − 2)

2

⌉
(21.8)

which contradicts the hypothesis.

Suppose G is 2-connected. Thus removing a single vertex does not result
in a disconnected or trivial graph, which is just another way to say that G
does not have a cut vertex. With k = 2, we get a very nice result quickly from
the above theorem:

Corollary 21.3.9. Let G be a graph of order n. Then if δ(G) ≥
⌈
n
2

⌉
, G does

not have a cut vertex.

21.3.4 Edge Cuts and Bridges

Since graphs consist of vertices and edges, it is natural to now explore edge
cuts.

Definition 21.3.10. (Edge Cut) Let G be a graph with vertex set E = E(G).
Any X ⊆ E such that G−X is disconnected is called a edge cut of G.

A edge cut of minimum cardinality is known as a minimum edge cut . The
cardinality of a minimum edge cut of a graph G is called the edge connectivity
of G and is denoted λ(G). λ(G) is, thus, the smallest number of edges of G
whose removal results in a disconnected graph or the trivial graph.

Since removing all the edges incident to a any vertex isolates the vertex,
a set of edges incident to a given vertex forms an edge cut. It follows that a
trivial bound on the edge connectivity of a graph G of order n is 0 ≤ λ(G) ≤
δ(G) ≤ n− 1.

Let us also add that edge cuts that consist of a single edge have a special
name. If e is an edge in a connected graph G such that G− e is disconnected,
then e is called a bridge of G. A bridge is illustrated in the following diagram.

e

Connected graph G with bridge e

C1 C2

Disconnected graph G− e

C1 C2

We will close this section offering a result without proof that ties together
the two types of connectivity of a graph. The result is due to Hassler Whitney
[63] in 1932.

Some Useful and Interesting Results 299

Theorem 21.3.11. (Whitney’s Inequalities) Let G be any graph of order n.
Then

0 ≤ κ(G) ≤ λ(G) ≤ δ(G) < n.

21.4 Some Useful and Interesting Results

We now offer results on the material that has been presented; most will be
quite useful and the remaining illustrate an important mathematical reality.

We begin with the first theorem in almost every Graph Theory text.

Theorem 21.4.1 (The First Theorem of Graph Theory). Let G be a graph
with vertex set V and size m. Then∑

v∈V

deg(v) = 2m.

Proof. As each edge is formed by two vertices, each edge will contribute 2 to
the total degree of the graph.

The First Theorem of Graph Theory is also often called The Handshake
Lemma. This name arises from modeling the total number of handshakes
among guests at a party by representing each guest as a vertex and an edge
is present if a pair of guests shake hands.

It is an easy observation that the number of edges in a path of order n
is n − 1; that is the size of any Pn is always n − 1. Moreover, since every
edge in a graph is determined by its two vertices, the size of Kn is necessarily(
n
2

)
= n(n−1)

2 .
Since this is an Optimization text, let us now consider maximizing the

number of edges in a complete bipartite graph of order n. We may suspect we
get the most edges by making the partite sets as close in order as possible.
This is indeed the case.

First, some notation. In Section 20.5 we were introduced to the ceiling
function. We now introduce its kin.

Notation (Floor Function). Let r be a real number. The floor of r is

⌊r⌋ = the greatest integer k ≤ r.

For example, ⌊π⌋ = 3 and ⌊− 5
2⌋ = −3. Now

Theorem 21.4.2. The size of a bipartite graph of order n is at most ⌊n2/4⌋.

Proof. (Incorrect!) Let U and V be the partite sets and put |U | = x. Hence
|V | = n − x. The maximum number of edges will occur when the graph is a
complete bipartite graph which would then have size m = x(n−x). n is fixed,

300 An Introduction to Graph Theory

but x is a variable, thus using Calculus, m′ = n − 2x and setting this to 0
we get a critical number when x = n

2 . Since m′′ = −2 < 0, this value is a
maximizer. Thus |U | = |V | = n

2 yields the biggest size of n2/4.

Before reading further, stop and consider why this technique is incorrect.
We are counting and n2/4 may be an integer. One may want to round down

to the nearest integer, but recall Anna’s Cozy Home Furniture in Example
8.1.1 from Chapter 8 and how rounding did not work. The problem here is
that whatever |U | is, it is an integer, and since Calculus is done over the reals
(a continuous problem), its tools cannot be applied to discrete problems. As
we saw with Integer Linear Programming in Chapter 8, discrete problems can
be much more difficult than the continuous Linear Programming problems in
Chapter 6.

Proof. (Correct) Suppose G is a bipartite graph with partite sets U and V
and put |U | = s where s is a positive integer less than n (if s = 0 or n, G
would have no edges). Since6

0 ≤ (n− 2s)2 = n2 − 4ns+ 4s2 (21.9)

we have n2 ≥ 4s(n− s) giving s(n− s) ≤ n2/4. Thus

size of G ≤ size of Ks,n−s = s(n− s) ≤ n2/4. (21.10)

But as the size of G is an integer,

size of G ≤ ⌊n2/4⌋.

The converse of Theorem 21.4.2 is quite useful. It tells us that if a graph
has too many edges, then the graph cannot be bipartite. In particular.

Corollary 21.4.3. (Converse of Theorem 21.4.2) If a graph G of order n has
more than ⌊n2/4⌋ edges, then G is not bipartite.

Actually, we can say something even stronger than the converse.

Theorem 21.4.4. Let G be a graph of order n ≥ 3 and size m ≥ ⌊n2/4⌋.
Then G contains a triangle (a C3).

Proof. First consider the case for G when n = 3. To meet the hypothesis of
the theorem, m > ⌊32/4⌋ = 2. As the size of K3 is

(
3
2

)
= 3, m ≤ 3. Since

2 < m ≤ 3, m = 3 and thus G = C3.
Next consider the case for G when n = 4. Thus, m > ⌊42/4⌋ = 4. As the

size of K4 is
(
4
2

)
= 6, m ≤ 6. Since 4 < m ≤ 6, m = 5 or 6 and thus G is

either K4 or K4 less an edge. In either case, G contains a triangle.

6We are secretly using the Arithmetic Mean – Geometric Mean (Theorem 18.5.1) here.

Exercises 301

For the other cases, the proof will be by contradiction. Suppose that there
exists a graph G of smallest order n ≥ 5 and size m > ⌊n2/4⌋ such that G does
not contain a triangle. By hypothesis, G has size m > ⌊52/4⌋ = 6 (namely, its
edge set is nonempty) and let uv be an edge in G. Since G has no triangles,
there is no vertex in G adjacent to both u and v. Thus since u and v are
neighbors and their neighborhoods are disjoint,

(deg u− 1) + (deg v − 1) ≤ n− 2 (21.11)

giving
deg u+ deg v ≤ n. (21.12)

Put G′ = G−u− v (the graph G less vertices u and v and any edges incident
to u and v). By assumption, G does not contain a triangle and as G′ is a
subgraph of G, neither does G′. Moreover, G′ has order n− 2 < n and size

m′ = m− (deg u+ deg v) + 1 (double counting removing edge uv) (21.13)

≥ m− n+ 1 (by 21.12) (21.14)

> ⌊n2/4⌋ − n+ 1 (by hypothesis) (21.15)

≤ n2/4− n+ 1 (since m′ is an integer) (21.16)

=
n2 − 4n− 4

4
(21.17)

=
(n− 2)2

4
(21.18)

≥ ⌊(order of G′)/4⌋. (21.19)

Thus G′ meets the conditions of the hypothesis having smaller order than G.
Since G was a graph of the smallest order meeting the conditions but not
having a triangle, G′ must have a triangle; a contradiction.

Putting together Theorem 21.4.2 and Theorem 21.4.4 we get quite a won-
derful result: any graph that has order n ≥ 3 with size m > ⌊n2/4⌋ not only
cannot be bipartite, it must contain a triangle.

21.5 Exercises

Exercise 21.1. A regular graph is a graph G where every vertex has the same
degree; that is, there is a nonnegative constant r such that deg(u) = r for every
vertex u of G (such a graph is said to be r-regular). A graph in which every
vertex has a different degree, that is deg(u) ̸= deg(v) for all distinct vertices u
and v in G, is said to be irregular. Prove that there do not exist any irregular
graphs (Hint: use the Pigeonhole Principle).

302 An Introduction to Graph Theory

Exercise 21.2. Let G be a graph of order n and size m ≥ n2/4. Prove that
G does not have a cut vertex.

Exercise 21.3. Determine the vertex-connectivity κ(Ks,t) and edge-
connectivity λ(Ks,t) of an arbitrary complete bipartite graph Ks,t. (Hint: con-
sider the order of the largest partite set.)

Exercise 21.4. Repeat the previous exercise but for an arbitrary complete
k-partite graph Kn1,n2,...,nk

.

Exercise 21.5. Using one of Whitney’s inequalities (Theorem 21.3.11), prove
that if G is a graph of order n and size m with m ≥ n− 1, then

κ(G) ≤
⌊
2m

n

⌋
.

22

Network Flows

Network flow problems encompass a wide range of important applications in-
cluding the flow of vital natural resources through a network of pipes, telecom-
munications, shipping oranges from orchards to processing facilities to distri-
bution centers to stores, and so much more.

22.1 Basic Definitions

A network is a digraph D with two distinguished vertices s and t – the source
and sink – together with a nonnegative real-valued function c : E(D)→ R+.
The digraph D is called the underlying digraph of the network. Similarly, the
graph G obtained by removing the orientation on the edges and compressing
any two directed edges between vertices into a single edge is called the un-
derlying graph of the network. The function c on the edges of D is called a
capacity function. If uv ∈ E(D), then the value c(uv) is referred to as the
capacity of edge uv. Vertices in a network that are not the source or the sink
are often called intermediate vertices.

Example 22.1.1. Figure 22.1 illustrates a network on 6 vertices with source s
and sink t. This network has a, b, c, and d as intermediate vertices. Capacities
of each edge written adjacent to the edge.

It is possible to have multiple sources or sinks, but in these situations we
can satisfy the definition of a network by introducing an artificial source which
would then lead to each of the multiple sources. Likewise, an artificial sink
may be introduced for a situation with multiple sinks.

Now that we have a network, we may introduce flow into the system.

Definition 22.1.2. (Flow in a Network) Let N be a network with underlying
digraph D, source s, sink t, and capacity function c(e) defined on all e ∈
E(D). A flow in N is a real-valued function f defined on E(D) satisfying the
conditions

1. 0 ≤ f(e) ≤ c(e) for every e ∈ D and

2. f+(u) = f−(u) for every intermediate vertex u in N

DOI: 10.1201/9780367425517-22 303

https://doi.org/10.1201/9780367425517-22

304 Network Flows

source s

a

c

b

d

t sink

13

8

5

4

6 3

11

7

15

9

FIGURE 22.1
A network with a capacity function.

where
f+(u) :=

∑
y∈N+(u)

f(uy)

and
f−(u) :=

∑
x∈N−(u)

f(xu).

The f+(u) in the definition is the total flow out of u where f−(u) is referred
to as the total flow into u. Thus the net flow out of a vertex u is

f+(u)− f−(u)

where the net flow into a vertex u is

f−(u)− f+(u).

Condition 2 states that the net flow into an intermediate vertex must
equal to the net flow leaving the vertex. This is known as the conservation
equation in network flows. The inequalities in condition 1 are referred to as
the capacity constraints. Any edge e such that f(e) = c(e) is said to be a
saturated edge. Edges whose flow is strictly less than their capacity are called
unsaturated edges. Figure 22.2 shows a network the capacity and flow of each
edge included. Here, the notation a/b on edge e means c(e) = b and f(e) = a.
In this example, note that f+(a) = 4 + 3 + 3 = 10 and f−(a) = 10 as well,
satisfying the conservation equation for vertex a.

By their definition, a source and sink are just distinguished vertices in
a digraph. In practice, though, they are (as the names suggest) the place
where the flow begins and the place where it ends. Usually the source only
has directed edges exiting and the sink only has in-edges, though exceptions
occur. Note that the definitions are still satisfied, though, if the sink has a
positive in-degree and the source a positive out-degree. These possibilities are
be considered in the following theorem, which begins to pave the way for the
main result of this chapter.

Maximum Flows and Cuts 305

source s

a

c

b

d

t sink

10/13

3/8

3/5

4/4

3/6

0/3

6/11

0/7

4/15

9/9

FIGURE 22.2
A network with edge capacities and flows.

Theorem 22.1.3. Consider a network with source s, sink t, and flow f . Then

f+(s)− f−(s) = f+(t)− f−(t).

Theorem 22.1.3 says that the net flow out of the source is the same
as the net flow into the sink. This is obvious consequence of the con-
servation equations holding for each intermediate vertex and observe that
f+(s)− f−(s) = 13 = f+(t)− f−(t) in Figure 22.2.

22.2 Maximum Flows and Cuts

By Theorem 22.1.3, the net flow out of the source is the same as the net flow
into the sink. It is natural to consider how large this net flow can be.

Definition 22.2.1 (Value of a Flow). Let N be a network with source s and
flow f . Then the value of the flow in N is

val(f) := f+(s)− f−(s).

Thus val(f) is just the net flow out of the source s which, by Theorem
22.1.3, is also the net flow into the sink. In Figure 22.2, val(f) = 13.

For a networkN , let F be the collection of all possible flows on the network.
Then the maximum flow on N is val(f∗) such that val(f∗) ≥ val(f) for all
f ∈ F . Of course, we are very interested in determining what the maximum
flow is on a given network. To do this, we will need a very helpful tool.

Definition 22.2.2 (A Cut in a Network). Let N be a network with source s,
sink t, and underlying digraph D. For U ⊂ V (D), define U := V (D)−U (the
complement of U in V (D)). A cut in N , [U,U], where s ∈ U and t ∈ U , is
the collection of all directed edges uv from E(D) such that u ∈ U and v ∈ U
(i.e. all forward edges from vertices in U to vertices in U).

306 Network Flows

s

a

c

b

d

t

10/13

3/8

3/5

4/4

3/6

0/3

6/11

0/7

4/15

9/9

cut
s

a

c

b

d

t

10/13

6/11

0/7
0/3

4/15

9/9

FIGURE 22.3
The cut U = {s, a} in the network N .

Thus a cut in a network is an edge-cut but also necessarily a very special
one. Here, exactly one of the source and sink end up in U and every edge of
D that has its start vertex in U and end vertex in U is part of the cut. Figure
22.3 illustrates a cut [U,U] where U = {s, a}.

Now consider a network with a capacity function c. For a cut K = [U,U],
we define the capacity of the cut to be

cap(K) :=
∑

(x,y)∈[U,U]

c(xy).

The cut K = [U,U] in Figure 22.3 has capacity

cap(K) = c(sc) + c(ab) + c(ac) + c(ad) = 8 + 4 + 5 + 6 = 23.

For any U ⊂ V (D), let us define f+(U) :=
∑

x∈U f+(x); that is, the total
flow out of the set of vertices in U . Similarly, f+(U) :=

∑
x∈U f+(x); that is,

the total flow into the set of vertices in U . For U = {s, a} in Figure 22.3,

f+(U) = f+(s) + f+(a) = [f(sa) + f(sc)] + [f(ab) + f(ac) + f(ad)]

= [10 + 3] + [4 + 3 + 3] = 23

and
f−(U) = f−(s) + f−(a) = 0 + [f(sa)] = 10.

Notice that for this cut f+(U) − f−(U) = 23 − 10 = 13, which has been a
reoccurring number in this example.

Theorem 22.2.3. (Weak Duality in Flows) Let f be a flow in a network N
with K = [U,U] a cut in N . Then

val(f) = f+(U)− f−(U) ≤ cap(K).

Notice that for the example in Figure 22.3, val(f) = 13 = f+(U)−f−(u) ≤
23 = cap(K).

Maximum Flows and Cuts 307

Proof. Let D be the underlying digraph of N with source s and a cut K =
[U,U]. Suppose U = {s, u1, . . . , uk}. Then

f+(U)− f−(U)

:= f+(s) + f+(u1) + · · · f+(uk)−
(
f−(s) + f− + (u1) + · · · f− + (uk)

)
(22.1)

=
(
f+(s)− f−(s)

)
+
(
f+(u1)− f− + (u1)

)
+ · · ·

(
f+(uk)− f− + (uk)

)
(22.2)

= f+(s)− f−(s) by the conservation equations (22.3)

=: val(f). (22.4)

For the cut K, let U∗ be the vertices of U incident with the edges e1, . . . , el
removed in the cut; i.e. e1, . . . , el ∈ [U,U]. In Figure 22.3, we have U∗ = {a}
and U −U∗ = {s}. Edges incident with the vertices in u that are not involved
in the cut have a net contribution of 0 to f+(U)− f−(U) as in edge sa again
in the example. Thus the only positive contributions to f+(U) − f−(U) are
the outflows on the vertices in U∗. Hence

f+(U)− f−(U) ≤ f(e1) + · · ·+ f(el) ≤ c(e1) + · · · c(el) = cap(K).

Theorem 22.2.3 is very important and states what so often occurs in opti-
mization: one thing’s maximum is another thing’s minimum. In light of this,
as we have seen maximum flow, it is now time to define a minimum cut. Con-
sider a network N and let K be the collection of all possible cuts on N . K∗ is
a minimum cut on N if cap(K∗) ≤ cap(K) for all K ∈ K.

Two very nice results that fulfill our goal for the chapter follow from The-
orem 22.2.3.

Corollary 22.2.4. If f is a flow in a network N and K a cut where val(f) =
cap(K), then f is a maximum flow and K is a minimum cut.

Proof. Suppose f∗ is a maximum flow in N and K∗ is a minimum cut. Thus
val(f) ≤ val(f∗) and cap(K∗) ≤ cap(K). Together with Theorem 22.2.3 we
then have

val(f) ≤ val(f∗) ≤ cap(K∗) ≤ cap(K).

By assumption val(f) = cap(K), thus val(f∗) = val(f), making f∗ a maxi-
mum flow. As well, the hypothesis leads to cap(K∗) = cap(K), which means
K∗ is a minimum cut.

Piecing together some of the details for proving the equality in Theorem
22.2.3 also gives us a sufficient condition for having a maximum flow and
minimum cut.

Corollary 22.2.5 (Sufficient Conditions for a Max Flow and Min Cut). Sup-
pose f is a flow in a network N and K = [U,U] a cut satisfying

308 Network Flows

TABLE 22.1
Possible Edge Cuts in the Network N from Figure 22.2

U U K = [U,U] cap(K) Equal val(f) = Max Flow/
f+(s) = 13? Min Cut

s a, b, c, d, t sa, sc 21 No No
s, a b, c, d, t sc, ab, ac, ad 23 No No
s, b a, c, d, t sa, sc, bc, bd, bt 46 No No
s, c a, b, d, t sa, cd 24 No No
s, d a, b, c, t sa, sc, dt 30 No No
s, a, b c, d, t sc, ac, ad, bd, bt 41 No No
s, a, c b, d, t ab, ad, cd 21 No No
s, a, d b, c, t sc, ab, ac, dt 26 No No
s, b, c a, d, t sa, bd, bt, cd 46 No No
s, b, d a, c, t sa, sc, bc, bt, dt 48 No No
s, c, d a, b, t sa, dt 22 No No
s, b, c, d a, t sa, bt, dt 37 No No
s, a, c, d b, t ab, dt 13 Yes Yes
s, a, b, c d, t ad, bd, bt, cd 39 No No
s, a, b, d c, t sc, ac, bc, bt, dt 40 No No
s, a, b, c, d t bt, dt 24 No No

• f(uv) = c(uv) for all edges uv in the cut (thus u ∈ U and v ∈ U) and

• f(vu) = 0 for all edges vu in the cut with v ∈ U and u ∈ U ,

then f is maximum flow and K is a minimum cut.

Corollary 22.2.5 says that if a cut [U,U] has

• all forward edges in the cut (edges leaving the vertices in U and entering
vertices in U) are saturated as well as

• all backwards edges (those leaving the vertices in U and entering vertices
in U) have no flow,

then f is a maximum flow and K a minimum cut.
We illustrate what we have discussed with the following example:

Example 22.2.6. Let N the network shown in Figure 22.2 with the stated
flows and capacities. As each of the 4 intermediate vertices can either be in
U or not, there are 24 possible cuts in N . These 16 cuts, as well as whether
each cut is a minimum cut, are listed in Table 22.1.

Thus network N has a unique minimum cut. Notice that this cut, U =
{s, a, c, d} with removed edges ad and bt, has all forward edges saturated and
any backwards edges (there are none) have no flow, as in Corollary 22.2.5.

The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm 309

We improve slightly the results above with the following important theo-
rem. It was proven independently by Lester Randolf Ford, Jr and Delbert Roy
Fulkerson [24] as well as Peter Elias, Alex Feinstein, and Claude E. Shannon
[22] with both papers appearing in 1956. This result is regarded by many as
one of the most beautiful theorems in mathematics.

Theorem 22.2.7 (Max-Flow Min-Cut Theorem). In any network, the value
of a maximum flow equals the capacity of a minimum cut.

The proof of the Max-Flow Min-Cut Theorem is not difficult, but involves
the idea of augmenting paths (which we will see shortly). We will exclude the
proof and direct interested readers to the appropriate sections in either of the
excellent texts [9] or [30].

22.3 The Dinitz-Edmonds-Karp-Ford-Fulkerson
Algorithm

As often happens in mathematics, the Max-Flow Min-Cut Theorem provides
important information, but the statement of the theorem does not describe
how to obtain it. It is, of course, useful to know that the maximum flow is
the same as the capacity of a minimum cut, but how do we determine exactly
what this is?

Ford and Fulkerson’s proof of their Max-Flow Min-Cut Theorem included
elements that led to an algorithm for finding a maximum flow in a network; the
well-known Ford-Fulkerson Algorithm. The algorithm does return the maxi-
mum flow in a network but also comes with some concerns:

• The algorithm may fail to terminate if some of the capacities are irrational
(Ford and Fulkerson’s example showing this can be found in [25]). This,
of course, is not a concern in practice.

• It is possible for the algorithm to run very inefficiently.

As such, we will avoid introducing the original Ford-Fulkerson Algorithm
and note that it is the essence of two similar algorithms that followed. Im-
proved versions of Ford-Fulkerson were developed independently by Yefim A.
Dinitz1 in 1970 [18] and Jack Edmonds and Richard Karp in 1972 [37]. The
algorithms both improve upon the Ford-Fulkerson Algorithm by establishing
a search order for the augmenting path. This improvement removes the asso-
ciated concerns. The algorithm is most often referred to as the Edmonds-Karp
Algorithm but is also called Dinitz’s Algorithm, Dinic’s Algorithm, and even
the Dinitz (or Dinic)-Edmonds-Karp Algorithm. As the improved algorithms

1Initially, Dinitz’s name was transliterated from Russian to Dinic and this version of his
name is often associated with the algorithm.

310 Network Flows

u = u0

e1

u1

e2

u2

e3

u3

e5

u4 e4

u5

e6

u6 = v

FIGURE 22.4
A u− v semipath P from a network.

are the Ford and Fulkerson Algorithm with a breadth-first search introduced,
it seems proper to honor all five of the algorithm’s creators.

Before introducing the algorithm, we should establishing some of the
nomenclature.

Definition 22.3.1 (u− v semipath). In a digraph D, a u− v semipath is a
sequence P = (u = u0, e1, u1, e2, u2, . . . , uk−1, ek, uk = v) of distinct vertices
and directed edges beginning with u and ending with v such that ei = ui−1ui

or ei = uiui−1.

Thus a semipath is a path but with directed edges and the condition that
the edge ei incident with vertices from the ordered list ui−1 and ui is either be
the directed edge ui−1ui (called a forward directed edge of P) or the directed
edge uiui−1 (a backward directed edge of P). Figure 22.4 shows a u−v semipath
P having forward edges e1, e3, e4, e5, and e6 and backward edge e2. Note,
that as the example illustrates, whether an edge is regarded as a forward edge
or backward edge in the semipath depends on the labeling of the vertices in
the sequence giving the semipath.

Now that we understand semipaths,

Definition 22.3.2 (f -augmenting semipath). Consider a network N with un-
derlying digraph D and capacity function c. Let f be a flow in N . Then a semi-
path P = (u0, e1, u1, e2, u2, . . . , uk−1, ek, uk) in D is said to be f -unsaturated
if for each i, 1 ≤ i ≤ k,

• if ei is a forward edge, then f(ei) < c(ei) and

• if ei is a backward edge, then f(ei) > 0.

A semipath from the source to the sink that is f -unsaturated is called an f -
augmenting semipath.

Thus an f -augmenting semipath, or augmenting semipath, is a semipath
from the source to the sink where each forward edge is unsaturated and the
backward edges have positive flow.

Let f be a flow in a network N and suppose N has an f -augmenting
semipath P . Since P is an f -augmenting semipath, it is possible to increase
the flow across it and obtain a new flow f∗ from the source to the sink such
that f∗ > f . Thus, if f -augmenting semipaths exist in N , f cannot be the

The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm 311

s

a

b

e

d

c

g

f

t

8/15

14/14

13/16

6/6

9/9

4/6

14/17

2/4

1/4

4/4

16/23

5/11

FIGURE 22.5
An augmenting semipath sadft.

s

a

b

e

d

c

g

f

t

10/15

14/14

13/16

4/6

9/9

4/6

14/17

4/4

1/4

4/4

18/23

5/11

FIGURE 22.6
After augmenting the flow on semipath sadft.

maximum flow in N . Figure 22.5 shows a network with flow f = 21 and an
augmenting semipath sadft. Decreasing the flow on edge da from 6 to 4 and
moving that flow to df permits sa to have its flow increased (augmented) to
10 (but no more because of the capacity on ac). This augmentation results
in a new network flow of f∗ = 23 as shown in Figure 22.6. This is not the
max flow as sadgt is also an augmenting path and a flow greater than 23 is
possible.

The algorithm proceeds by first creating labels for the vertices in the net-
work with the condition that a vertex v is labeled only if there exists an s−v
semipath (s is the source) that is unsaturated. Suppose such a semipath P
exists and that u is the vertex immediately preceding v in the semipath. v is
labeled with an ordered pair where

312 Network Flows

TABLE 22.2
Using DEKaFF to Find a First Augmenting Semipath in N in Figure 22.2

Iteration v Labeled L Labeled Accepted
Vertices Vertices

0 s labeled (−,∞) s s
1 s s accepted and removed ∅ s s

sa ∈ E(D), a labeled (s+, 7) a s,a s
sb ∈ E(D), b labeled (s+, 3) a,b s,a,b s

2 a a accepted and removed b s,a,b s,a
ad ∈ E(D), d labeled (a−, 6) b, d s,a,b,d s,a

3 b b accepted and removed d s,a,b,d s,a,b
be ∈ E(D), e labeled (b+, 2) d,e s,a,b,d,e s,a,b

4 d d accepted and removed e s,a,b,d,e s,a,b,d
df ∈ E(D), f labeled (d+, 2) e,f s,a,b,d,e,f s,a,b,d
dg ∈ E(D), g labeled (d+, 3) e,f ,g s,a,b,d,e,f ,g s,a,b,d

5 e e accepted and removed f ,g s,a,b,d,e,f ,g s,a,b,d,e
6 f f accepted and removed g s,a,b,d,e,f ,g s,a,b,d,e,f

ft ∈ E(D), t labeled (f+, 2) g,t s,a,b,d,e,f ,g,t s,a,b,d,e,f

• the first component of the ordered pair is u+ if uv is a directed edge in P
or u− if that direct edge is vu; and

• the second component is the positive number which gives the potential
change in the flow f along P .

A list is then formed, conditions are checked to increase the flow, if possible,
and vertices are accepted into the f -augmenting semipath. The details are
stated in Algorithm 22.3.1. It is worthwhile to note that during the running
of the algorithm, every vertex of the network will be either (i) unlabeled, (ii)
labeled but unaccepted, or (iii) labeled and accepted.

Example 22.3.3. We use Algorithm 22.3.1 to find the maximum flow on the
network N in Figure 22.5.

First Augmenting Semipath (Steps 3 – 33)

Iterating through the if in steps 4 through 24 is a labeling procedure which
produces the first f -augmenting semipath to increase the flow in N . This pro-
cess is shown in Table 22.2 with notes on the iterations below. Steps 26 – 32
are then followed to produce an augmenting semipath and augment flows on
the appropriate edges.

1. Since L is nonempty, the first vertex, s, in L is scanned and removed from
the list. We then search the vertices of D and see that we have vertices a

The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm 313

Algorithm 22.3.1 The Dinitz-Edmonds-Karp-Ford-Fulkerson (DEKaFF)
Algorithm

Input: A networkN with underlying digraphD, source s, sink t, and capacity
function c.

1: let f be a given flow on D
2: assign each edge uv of D the values its flow f(u, v) and capacity c(u, v)
3: label source s with (−,∞) and add s to sequence (ordered list) L of

labeled, unaccepted vertices
4: if L = ∅ then
5: stop
6: else accept and remove the first vertex, v, of L which has as its label

either (u+, A(x)) or (u−, A(x)).
7: if vertex x in D is unlabeled (break ties lexicographically) then
8: if vx ∈ E(D) then ▷ a forward edge
9: if f(v, x) < c(v, x) then

10: assign vertex x the label (v+, A(x)) where A(x) :=
min{A(v), c(v, x)− f(v, x)}

11: add x to the end of the list L
12: end if
13: else if xv ∈ E(D) then ▷ a backward edge
14: if f(x, v) > 0 then
15: assign vertex x the label (v−, A(x)) where A(x) :=

min{A(v), f(x, v)}
16: add x to the end of the list L
17: end if
18: end if
19: end if
20: end if
21: if sink t is labeled then
22: go to step 25
23: else go to step 4
24: end if
25: proceed backwards from the sink t and following the first coordinate of

the labels gives an f -augmenting semipath P = (s, e1, v1, e2, v2, . . . , ek, t)
where the edges are augmented by

26: for i = 1 to k do
27: if vi is labeled (v+i−1, A(vi)) (a forward arc) then
28: put f(ei) = f(vi−1, vi) := f(vi−1, vi) +A(t) ▷ t is the sink
29: else if vi is labeled (v−i−1, A(vi)) (a backward arc) then
30: put f(ei) = f(vi, vi−1) := f(vi, vi−1)−A(t) ▷ t is the sink
31: end if
32: end for
33: delete all labels and return to Step 3
Output: The max flow f in the network N .

314 Network Flows

and b incident with the selected scanned vertex s. As sa is an edge into
vertex a, the first component of a’s label is s+. Since this is an in-edge, by
the algorithm, a has as its second component A(a) := min{A(s), c(s, a)−
f(s, a)} = min{∞, 15 − 8} = 7. It is a similar process to obtain b’s label
with A(b) := min{A(s), c(s, b) − f(s, b)} = min{∞, 16 − 13} = 3.. Note
that at this moment we have three labeled vertices s = (−,∞), a = (s+, 7),
and b = (s+, 3) with L = (a, b). Since the sink t is not yet labeled, we go
back to step 4.

2. Since L ≠ ∅, we continue and scan a and remove it from L. Searching the
vertices of D we have that vertices c and d are incident with the selected
scanned vertex a. ac is an edge into vertex c, but as it is a forward edge at
full capacity, it is not labeled by the algorithm. da is also at full capacity,
but as it is a backwards edge, it is labeled. Thus the first component of d’s
label is a−. Since this is an out-edge, by the algorithm, d has as its second
component A(d) := min{A(a), c(d, a)} = min{7, 6} = 6. At this moment
we have four labeled vertices s, a, b and d with L = (b, d). Since the sink
t is not yet labeled, we go back to step 4.

3. As b is the first vertex in the list, it is accepted and removed from L.
Vertex d is already labeled, so nothing is done with it. be is an edge in
D and as it is a forward edge its first component is b+ and its second is
A(e) := min{A(b), c(b, e) − f(b, e)} = min{3, 6 − 4} = 2. Since the sink t
is not yet labeled, we go back to step 4.

4. As d is the first vertex in L and accepted and removed from the list. df
is an edge in D and as it is a forward edge its first component is d+ and
its second is A(f) := min{A(d), c(d, f) − f(d, f)} = min{6, 4 − 2} = 2.
Likewise for g with A(g) := min{A(d), c(d, g)− f(d, g)} = min{6, 4−1} =
2. Since the sink t is not yet labeled, we go back to step 4.

5. e is accepted and removed from L with eg ∈ E(D), but g is labeled, hence
nothing is done. Again, as t is not yet labeled, we return to step 4.

6. f is accepted and removed from L with ft ∈ E(D). The first component
of t’s label is f+ and its second is A(t) := min{A(f), c(f, t) − f(f, t)} =
min{2, 23−16} = 2. Since the sink t is now labeled, we proceed to step 25.

We now identify the f -augmenting semipath produced by these steps in the
algorithm

The for loop in steps 26 through 32 provide the augmentations on the
stated edges to increase the flow in N . In this run through the algorithm the
vertices have the labels given in Table 22.3.

Reading backwards from the sink t and following the first components of the
labels we have the augmenting semipath sadft. The edges sa, da (a backwards
edge), df , ft are augmented by steps 26–32 with the results as in Table 22.4.

The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm 315

TABLE 22.3
Vertex Labels from the First Run through Algorithm 22.3.1

Vertex Label
s (−,∞)
a (s+, 7)
b (s+, 3)
c unlabeled
d (a−, 6)
e (b+, 2)
f (d+, 2)
g (d+, 3)
t (f+, 2)

TABLE 22.4
Original Flow, Capacity and Augmentations on Edges in N from the First
Run Through Algorithm 22.3.1

Edge Original Flow Capacity Augmentation Augmented
(Steps 26–32) Flow

sa 8 15 +2 10
sb 13 16 none 13
ac 14 14 none 14
da 6 6 −2 4
bd 9 9 none 9
be 4 6 none 4
cf 14 17 none 14
df 2 4 +2 4
dg 1 4 none 1
eg 4 4 none 4
ft 16 23 +2 18
gt 5 11 none 5

The results of this run through DEKaFF are exactly what we obtained in
Figure 22.6. As stated in the algorithm, all labels are now cleared and we re-
peat the process.

Second Augmenting Semipath (Steps 3 – 33)

The labeling done in steps 4 through 24 is stated in Table 22.5. The re-
sulting labels are given in Table 22.6 and from this we see that sadgt is a new
augmenting semipath.

316 Network Flows

TABLE 22.5
Using DEKaFF to Find a Second Augmenting Semipath in N in Figure 22.6

Iteration v Labeled L Labeled Accepted
Vertices Vertices

0 s labeled (−,∞) s s
1 s s accepted and removed ∅ s s

sa ∈ E(D), a labeled (s+, 5) a s,a s
sb ∈ E(D), b labeled (s+, 3) a,b s,a,b s

2 a a accepted and removed b s,a,b s,a
ad ∈ E(D), d labeled (a−, 4) b, d s,a,b,d s,a

3 b b accepted and removed d s,a,b,d s,a,b
be ∈ E(D), e labeled (b+, 2) d,e s,a,b,d,e s,a,b

4 d d accepted and removed e s,a,b,d,e s,a,b,d
dg ∈ E(D), g labeled (d+, 3) e,g s,a,b,d,e,g s,a,b,d

5 e e accepted and removed g s,a,b,d,e,g s,a,b,d,e
6 g g accepted and removed ∅ s,a,b,d,e,g s,a,b,d,e,g

gt ∈ E(D), t labeled (g+, 3) t s,a,b,d,e,g,t s,a,b,d,e,g

TABLE 22.6
Vertex Labels from the Second Run Through Algorithm 22.3.1

Vertex Label
s (−,∞)
a (s+, 5)
b (s+, 3)
c unlabeled
d (a−, 4)
e (b+, 2)
f unlabeled
g (d+, 3)
t (g+, 3)

The results of the second augmentation are shown in Figure 22.7.

Search for Third Augmenting Semipath

The labeling process for the next search is given in Table 22.8.
Notice at the end of iteration 4, L = ∅. Thus DEKaFF terminates and the

max flow has been found. Thus the max flow in this example is 26 and a flow
yielding this flow value is given in Figure 22.7.

The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm 317

TABLE 22.7
Starting Flow, Capacity and Augmentations on Edges in N from the Second
Run Through Algorithm 22.3.1

Edge Start Flow Capacity Augmentation Augmented
(Steps 26–32) Flow

sa 10 15 +3 13
sb 13 16 none 13
ac 14 14 none 14
da 4 6 −3 1
bd 9 9 none 9
be 4 6 none 4
cf 14 17 none 14
df 4 4 none 4
dg 1 4 +3 4
eg 4 4 none 4
ft 18 23 none 18
gt 5 11 +3 8

s

a

b

e

d

c

g

f

t

13/15

14/14

13/16

1/6

9/9

4/6

14/17

4/4

4/4

4/4

18/23

8/11

FIGURE 22.7
Second run of DEKaFF results through augmenting the flow on semipath
sadgt.

It is worthwhile to note the we have something quite serendipitous occur-
ring with DEKaFF in the example. Notice in Table 22.8 that when we reach
the termination we have that s, a, b, and d are the labeled vertices. Putting
U := {s, a, b, d}, we have a cut [U,U] which has a cut capacity of 26. This is
also the max flow and is no accident. It is the case that the set of labeled ver-
tices at the termination stage gives a min cut in the network. This remarkable
fact is included in the following theorem.

318 Network Flows

TABLE 22.8
Third Search for an Augmenting Semipath in N in Figure 22.7

Iteration v Labeled L Labeled Accepted
Vertices Vertices

0 s labeled (−,∞) s s
1 s s accepted and removed ∅ s s

sa ∈ E(D), a labeled (s+, 2) a s,a s
sb ∈ E(D), b labeled (s+, 3) a,b s,a,b s

2 a a accepted and removed b s,a,b s,a
da ∈ E(D), d labeled (a−, 1) b, d s,a,b,d s,a

3 b b accepted and removed d s,a,b,d s,a,b
4 d d accepted and removed ∅ s,a,b,d s,a,b,d

Theorem 22.3.4. DEKaFF (Algorithm 22.3.1) terminates with a maximum
flow f in a given network N . Moreover, Letting U be the set of labeled vertices
at the termination stage of the algorithm gives a min cut [U,U] in the network
N .

A proof of the theorem appears in [9].

22.4 Max Flow as a Linear Programming Problem

It is possible to determine the maximum flow in a network via linear program-
ming. For a network N with underlying digraph D, source s, and sink t with
edge flows and capacities given by f(u, v) and c(u, v), then the maximum flow
in N is found by

Maximize val(f) = f+(s)− f−(s) (22.5)

Subject to f+(u) = f−(u) for all u ∈ V (D), u ̸= s, t and (22.6)

f(u, v) ≤ c(u, v) for all u, v ∈ V (D). (22.7)

The decision variables will be, of course, the flow on each edge in N .
The constraint equations in 22.6 are due the conservation of flow at each
intermediate vertex and the inequality constraints in 22.7 are such that no
edge flow exceeds its capacity.

Returning to Example 22.3.3 to find the maximum flow in the network in
Figure 22.6, we have as the decision variables:

Max Flow as a Linear Programming Problem 319

decision variable initial value capacity

f(s, a) = Xsa 8 15
f(s, b) = Xsb 13 16
f(a, c) = Xac 14 14
f(d, a) = Xda 6 6
f(b, d) = Xbd 9 9
f(b, e) = Xbe 4 6
f(c, f) = Xcf 14 17
f(d, f) = Xdf 2 4
f(d, g) = Xdg 1 4
f(e, g) = Xeg 4 4
f(f, t) = Xft 16 23
f(g, t) = Xgt 5 11

This yields the linear programming problem

Maximize Xsa +Xsb (22.8)

Subject to Xac −Xsa −Xda = 0 conservation of flow at vertex a (22.9)

Xbd +Xbe −Xsb = 0 conservation of flow at vertex b
(22.10)

Xcf −Xac = 0 conservation of flow at vertex c
(22.11)

Xda +Xdf +Xdg −Xbd = 0 conservation of flow at vertex d
(22.12)

Xeg −Xbe = 0 conservation of flow at vertex e
(22.13)

Xft −Xcf −Xdf = 0 conservation of flow at vertex f
(22.14)

Xgt −Xdg −Xeg = 0 conservation of flow at vertex g
(22.15)

0 ≤ Xsa ≤ 15 nonnegativity, capacity restriction

edge sa (22.16)

0 ≤ Xsb ≤ 16 nonnegativity, capacity restriction

edge sb (22.17)

0 ≤ Xac ≤ 14 nonnegativity, capacity restriction

edge ac (22.18)

0 ≤ Xda ≤ 6 nonnegativity, capacity restriction

edge da (22.19)

320 Network Flows

0 ≤ Xbd ≤ 9 nonnegativity, capacity restriction

edge bd (22.20)

0 ≤ Xbe ≤ 6 nonnegativity, capacity restriction

edge be (22.21)

0 ≤ Xcf ≤ 17 nonnegativity, capacity restriction

edge cf (22.22)

0 ≤ Xdf ≤ 4 nonnegativity, capacity restriction

edge df (22.23)

0 ≤ Xdg ≤ 4 nonnegativity, capacity restriction

edge dg (22.24)

0 ≤ Xeg ≤ 4 nonnegativity, capacity restriction

edge eg (22.25)

0 ≤ Xft ≤ 23 nonnegativity, capacity restriction

edge ft (22.26)

0 ≤ Xgt ≤ 11 nonnegativity, capacity restriction

edge gt (22.27)

As we can see, with an equality constraint for each intermediate vertex
and inequality constraint for each edge, this approach is quite cumbersome
and – it turns out – much less efficient than DEKaFF .

22.5 Application to a Major League Baseball Pennant
Race

There are many wonderful applications of both maximum flows in a network
as well as minimum cuts. We will explore an interesting one introduced by
Benjamin Schwartz in 1966 [51].

After the completion of all games on Sunday, September 13, 1992, there
were three weeks left in the regular season and the standings in the National
League East were

Club W L Pct GB
Pittsburgh Pirates 82 60 .577 –
Montreal Expos 79 63 .556 3.0
Saint Louis Cardinals 71 69 .507 10.0
Chicago Cubs 70 71 .496 11.5
New York Mets 63 78 .447 18.5
Philadelphia Phillies 58 82 .414 23.0

Application to a Major League Baseball Pennant Race 321

As Major League Baseball plays a 162 game schedule, the Phillies at this point
in the season have only 22 games remaining. The Pirates have 20 remaining,
but as the Phillies are 23 games out, they are clearly eliminated from catching
the Pirates and winning the division. The Mets, on the other hand, have 21
games remaining, and being 18.5 games out it seems they may have a shot
at the division title. The problem is, though, that they would have to surpass
both the Pirates and the Expos and these clubs have 6 games remaining
against each other. We can incorporate the fact that those two clubs will
have at least a total of 6 wins between them down the closing stretch of the
season and determine if the Mets are eliminated by modeling this situation as
a network flow.

This problem is referred to as the baseball elimination problem as this is
how Schwartz framed the application, but it clearly applies to any tournament
with n teams where winner is crowned based on tournament play.

First, we define the variables in the following table. What each variable
represents will be written to the right of the variable:

n : number of teams in the league or tournament
wi : the number wins team i has at the moment we are considering
ri : the number of games remaining for team i
rij : the number of games remaining team i has with team j

We will consider a team eliminated if it has no chance to finish the season in
first place.

The remaining games for the teams are (the number in parentheses in the
club’s column is the total number the team has remaining)2:

Club Pirates Expos Cardinals Cubs Mets Phillies Others

Pittsburgh Pirates (20) 4 4 3 6 3 0
Montreal Expos 4 (20) 3 6 3 4 0
Saint Louis Cardinals 4 3 (22) 4 4 7 0
Chicago Cubs 3 6 4 (21) 4 4 0
New York Mets 6 3 4 4 (21) 4 0
Philadelphia Phillies 3 4 7 4 4 (22) 0

To determine if team k is eliminated, a digraph in the network is formed
by introducing a source s and sink t and two sets of intermediate vertices.
One collection is the game or competition vertices: a vertex for each pair of

2The author cannot resist to point out the good old days of baseball: teams played 162
games that mattered and only the two division winners in each league advanced to the
postseason. As well, down the stretch teams only played divisional opponents. There was
nothing quite like a good ol’ pennant race in September. As well, teams used to regularly
play doubleheaders. During this three week period, the Phillies played doubleheaders on
three consecutive days; two with the Cardinals and one against the Mets. That is six games
in three days and they went 5-1.

322 Network Flows

. . .

. . .

...

...

...

...

...

...

. . .

. . .

s

n− 1, n

i, j

1,2

game vertices team vertices

2

1

j

i

n
n− 1

t

rn−1,n

ri,j

r1,2

∞

∞

∞

∞

∞

∞

wk + rk − wn

wk + rk − w1

FIGURE 22.8
Design of the network for the baseball elimination problem (all edges are
forward edges).

teams – for example, Pittsburgh versus Philadelphia. The second set is the
team vertices; that is, one vertex for each team. A edge is introduce from the
source to each competition vertex, then two edges will exit the competition
vertex with an edge going into the respective team vertices. We then also
introduce edges from the team vertices into the sink. To turn this into a
network flow problem, each edge from the source to the competition vertex
for the games between team i and j is assigned the capacity rij . No capacity
needs to be assigned to the edges joining the intermediate vertices, but the
edges leaving the team vertex i and entering the sink are given a capacity of
wk + rk − wi. Finally, let S bet the set of all teams in the league and define

R(k) :=
∑

i,j∈S−{k}
i<j

rij .

Schwartz proved in [51] that team k is not eliminated if and only if there exists
flow value of size R(k) in the defined network. He further proved that if this
flow exists, it is a max flow in the network.

A diagram of the construction of the network for an arbitrary problem is
given in Figure 22.8.

Exercises 323

For the 1992 National League Pennant race, we have the following:

s

NY-PHI

CH-PHI

CH-NY

ST-PHI

ST-NY

ST-CH

MN-PHI

MN-NY

MN-CH

MN-ST

PT-PHI

PT-NY

PT-CH

PT-ST

PT-MN

PIT

MON

STL

CHC

NYM

PHI

t

4

4

3

6

3

3

6

3

4

4

4

7

4

4

4

∞

∞

53 + 21− 70 = 4

7

12

15

21

23

FIGURE 22.9
Determining if the Mets are eliminated in the 1992 NL East Pennant race.

22.6 Exercises

Exercise 22.1. Make table similar to Table 22.1 of all cuts in the following
network. Edges are labeled with their capacity. Also state the maximum flow
through this network.

324 Network Flows

source s

a

b

c

t sink

7

11

5

5

4

6

10

8

Exercise 22.2. Make table similar to Table 22.1 of all cuts in the following
network. Edges are labeled with their capacity. Also state the maximum flow
through this network.

source s

a

c

b

d

t sink

11

12

6

9

5 3

14

8

7

12

Exercise 22.3. Make table similar to Table 22.1 of all cuts in the following
network. Edges are labeled with their capacity. Also state the maximum flow
through this network.

source s

a

b

c

d

e

t sink

22

19

13

15

14

12

5

7

5

8

17

13

21

Exercise 22.4. Use DEKaFF (Algorithm 22.3.1) to find the maximum flow
on the network in Exercise 22.1.

Exercise 22.5. Use DEKaFF (Algorithm 22.3.1) to find the maximum flow
on the network in Exercise 22.2.

Exercise 22.6. Use DEKaFF (Algorithm 22.3.1) to find the maximum flow
on the network in Exercise 22.3.

23

Minimum-Weight Spanning Trees and
Shortest Paths

23.1 Weighted Graphs and Spanning Trees

In Chapter 21, we were introduced to trees. For the applications considered
in this chapter, we will need to build on what we know of trees. The models
of these problems will involve weighted trees. Since a tree is a special graph,
we offer the following definition.

Definition 23.1.1 (Weighted Graph). Let G be a connected graph. G is a
weighted graph if there is a function w : E(G)→ R.

From the definition, we see that what makes a graph a weighted graph is
that numerical values (weights) are assigned to each edge. In applications, the
weights are most often some form of a cost.

Example 23.1.2. A weighted graph.

a b c

d

efg

5

2 3

7

4 5

8

4

1

Spanning subgraphs were introduced in Section 21.1. Recall that the “span”
in a spanning subgraph of G means that every vertex of G is reached; i.e. every
vertex of the subgraph is incident with an edge. Since a tree is connected by
definition, a spanning tree is a tree that reaches every vertex in the graph.

DOI: 10.1201/9780367425517-23 325

https://doi.org/10.1201/9780367425517-23

326 Minimum-Weight Spanning Trees and Shortest Paths

TABLE 23.1
Edges and Their Weights from Example 23.1.2

edge uv ab ae ag bc cd ce dg ef fg
w(uv) 2 8 5 3 4 7 1 5 4

Example 23.1.3. (Spanning Trees.)

spanning tree not a spanning tree not a spanning tree not a tree

23.2 Minimum-Weight Spanning Trees

Minimum-weight spanning trees have many applications, particularly when
connections in a network are in consideration as in the following example:

Example 23.2.1. The Delos Corporation is planning an amusement park
with a central luxury resort and five separate themed locations: Western World,
Medieval World, Roman World, Spa World (“where old age and pain have been
eliminated”), and Future World1. Delos’ plan is to have guests stay at the
resort then visit the location of their choosing for a day of fun and excitement
or relaxation. A sight for the resort and park has been chosen relatively close
to a water source and Delos must decide where to lay the necessary pipe to
get water from its source to the six locations. Distances between the source,
resort, and locations are given in Table 23.2.

Delos would like to minimize costs in getting water from its source to the
park’s locations. To minimize costs, Delos’ approach is to connect each location
to the source either directly or indirectly through a network of pipes with as
few of miles of pipe in the network as possible. Delos chose a site very suitable
to construction and there are no physical obstacles restricting the placement
of pipe between any locations.

1This example borrows from the films Westworld [62] and its sequel Futureworld [27].

Minimum-Weight Spanning Trees 327

TABLE 23.2
Distances (in Miles) Between Sites at Delos Resort in Example 23.2.1

Site Resort Western Medieval Roman Spa Future

Vertex Label (R) World World World World World

(W) (M) (O) (P) (F)

Source (S) 7 16 9 11 1 14
Resort (R) – 8 2 12 13 5
Western World (W) – – 8 5 13 4
Medieval World (M) – – – 3 6 11
Roman World (O) – – – – 9 10
Spa World (P) – – – – – 15

Solution. (Modeling Example 23.2.1.)
To create a model let the source, resort, and five themed locations each be
represented by a vertex and there will be an edge between vertices if a pipeline
is to be placed between the sites represented by the vertices. Recall that by
Highlight 21.1.3 we do not need to be concerned with placing the vertices in
our model in their exact physical locations. The only relevant aspects are that
there are vertices and either an edge between distinct vertices or not. Thus
the model will be a graph on 7 vertices and we consider pipelines between all
the sites we have a K7.

W

O

M

P

S
R

F

As discussed in Section 21.4, the size of K7 is
(
7
2

)
= 21 and, of course, this

is overkill. Delos does not need all these waterlines, and some thought reveals

328 Minimum-Weight Spanning Trees and Shortest Paths

that a spanning tree would get the job done. Moreover, as Delos is seeking an
optimal solution, a minimum-weight spanning tree is desired. ■

We will present two algorithms for finding minimum-weight spanning trees.
Both are examples of a general class of algorithms known as greedy algorithms,

Definition 23.2.2 (Greedy Algorithm). A greedy algorithm is an algorithm
where a locally optimal decision is made at each iteration.

Greedy algorithms are sometimes also called “unsophisticated locally op-
timal heuristics”. Rather than remembering that mouthful is important is to
realize that a greedy algorithm is exactly what the name says it is. During
each run of the process the algorithm only considers what is happening at the
moment; there is no consideration of anything regarding future decisions. We
have already seen one example of a greedy algorithm: the Simplex Method
from Section 6.2 for solving linear programming problems. At each iteration
the algorithm decides which decision variable is best to optimize at that mo-
ment and then maximizes the value of only that particular decision variable.
Recall that geometrically this meant that the algorithm chooses a decision
variable that most increases the objective function and then moves as far as
permitted by the feasible region in that direction.

23.2.1 Kruskal’s Algorithm

The first algorithm we consider for finding minimum-weight spanning trees
was developed by Joseph Bernard Kruskal [39] two years after he finished
is Ph.D. dissertation. Kruskal built upon the work of the Austria-Hungarian
(what would now be Czech) mathematician Otkar Bor̊uvka. Bor̊uvka’s 1926
paper [4] presented and proved an algorithm that constructs minimum-weight
spanning trees, a problem Bor̊uvka worked on in designing efficient distribu-
tion networks of electricity while an employee of the West Moravian Power
Company during World War I.

Algorithm 23.2.1 Kruskal’s Algorithm (1956) for Finding a Minimum
Weight Spanning Tree.

Objective: Find a minimum-weight spanning tree T of a weighted connected
graph G on n vertices.

Input: A weighted undirected graph G.
1: List all the edges e1, e2, . . . em of G\T in order of nondecreasing edge

weight; i.e. w(ei1) ≤ w(ei2) ≤ · · ·w(eim).
2: Starting with an edge of minimum weight, accept the edge into T as long as

its acceptance does not create a cycle in T . Ties may be settled arbitrarily.
3: By Theorem 21.2.8, the algorithm terminates when T has n− 1 edges.

Output: A minimum-weight spanning tree T of G. Though the total weight
of T is the unique minimum weight, the minimum-weight spanning tree T
need not be unique.

Minimum-Weight Spanning Trees 329

Let us now use Kruksal’s Algorithm to determine the least expensive way
to meet the water needs of Delos in Example 23.2.1.

Solution. (for Example 23.2.1 using Kruskal’s Algorithm.) Following the al-
gorithm, the edge weights in non-increasing order are

1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 16

and since G has 7 vertices, we know the algorithm will terminate once we have
selected 6 legal edges,

The first four iterations in building T of Kruskal’s Algorithm add edges
PS, MR, MO, and FW . There is a tie for the fifth iteration and we may
arbitrarily choose between FR and OW and we will arbitrarily choose2 FR.
For the sixth and final iteration, adding edge OW creates a cycle, so it is
not included, but the inclusion of MP creates an acyclic graph thus giving a
minimum-weight spanning tree.

F

W

O

R

M

S

P

T1 = iteration 1

1
F

W

O

R

M

S

P

T2 = iteration 2

1
2

F

W

O

R

M

S

P

T3 = iteration 3

1
2

3

F

W

O

R

M

S

P

T4 = iteration 4

1
2

3

4

2Almost all implementations of Kruskal’s Algorithm break ties lexiographically. With a
runtime of O(E log V), Kruskal’s Algorithm is very efficient, so there is insignificant com-
putational advantage in considering which choice of tied edges is better.

330 Minimum-Weight Spanning Trees and Shortest Paths

F

W

O

R

M

S

P

T5 = iteration 5

1
2

3

4

5

F

W

O

R

M

S

P

T6 = iteration 6 = n− 1

1
2

3

4

5

6

■

By the design of the algorithm – namely, edges are not added to T if their
inclusion creates a cycle – Kruskal’s will produce a tree. Thus is remains to
show that T is indeed a minimum-weight spanning tree of the given connected
weighted graph.

Proof. (Kruskal’s Algorithm produces a minimum-weight spanning tree.) Let
G be a connected weighted graph of order n and let T be a spanning tree
given by Kruskal’s Algorithm. Hence T has n − 1 edges e1, e2, . . . , en−1 with
w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1).

We will show that T is a minimum-weight spanning tree of G. Assume for
contradiction that T is not a minimum-weight spanning tree of G and let S be
a a minimum-weight spanning tree of G that among all the minimum-weight
spanning trees of G has the most edges in common with T . Since S ̸= T , there
exists at least one edge of T not is S. Let et be the first edge of T (the fixed
ordering of the edges is by weight with ties settled arbitrarily) not in common
with the edges of S. Note that if t > 1, then e1, e2, . . . , et−1 is in E(S)∪E(T).

Put S′ := S + et. Since S is a spanning tree and an edge has been added,
S′ must contain a cycle C. As T is acyclic, there is an edge e′ in C that is not
in T . Put T ′ := S′− e′ = S+ et− e′. Then T ′ spans G and is acyclic and thus
a spanning tree of G. Moreover

w(T ′) = w(S) + w(et)− w(e′) (23.1)

but as S is a minimum-weight spanning tree, w(S) ≤ w(T ′). Thus by 23.1,

w(S) ≤ w(T ′) = w(S) + w(et)− w(e′) (23.2)

giving
w(e′) ≤ w(et). (23.3)

There are two case to be considered:
Case t = 1

Thus et = e1 is an edge of least weight among all edges of G hence
w(et) ≤ w(e′). This together with (23.3) gives w(et) = w(e′) and thus by
(23.1) w(T ′) = w(S). Therefore T ′ is a minimum-weight spanning tree of G.
Furthermore, as et is in T but e′ is not in T , T ′ has more edges in common

Minimum-Weight Spanning Trees 331

with T than S, contradicting the assumption that S is a minimum-weight
spanning tree of G having the most edges in common with T .

Case t > 1
By Kruskal’s Algorithm, et is an edge ofG that can be added to e1, e2, . . . , en−1

without introducing a cycle. But e′ can also be added to T and not produce a
cycle, thus w(et) ≤ w(e′) by the process of the algorithm. This together with
(23.3) gives w(et) = w(e′) and the argument follows as in Case t = 1.

23.2.2 Prim’s Method

We now consider an alternate algorithm for finding a minimum-weighted span-
ning tree for a connected graph G. As Kruskal’s Algorithm focused on edges
and as it is that graphs only consist of vertices and edges, it will not be a
surprise that the alternate approach focuses on the vertices of G. This sec-
ond approach is due to a 1957 paper by Robert Clay Prim [45] though the
Czech mathematician Vojtěch Jarńık had developed and rigorously proved the
algorithm in 1930 [36].

Algorithm 23.2.2 Prim’s Method (1957).

Objective: Find a minimum-weight spanning tree T of a weighted connected
graph G on n vertices.

Input: An undirected weighted graph G.
1: Let V = V (G) and W = V (T). Select a start vertex from V to add to W .
2: Choose an edge out of W (i.e. an edge with one of its vertices from W)

that has the least weight. Ties are broken arbitrarily. Add the vertex from
V \W incident with this edge to W and the edge to T . The vertices in
V \W are referred to as not reached where the vertices in W are said to
be reached.

3: Repeat 2 until W has all n vertices.
Output: A minimum-weight spanning tree T of G. Though the total weight

of T is the unique minimum weight, the minimum-weight spanning tree T
need not be unique.

We will again determine the least expensive way to meet the water needs
of Delos in Example 23.2.1, but this time using Prim’s Method.

Solution. (for Example 23.2.1 using Prim’s Method.)
The iterations of Prim’s Method are given in the next table and illustrated

in the two figures that follows. The first figure emphasizes the reached and
unreached vertex sets through the first two iterations where the second figure
shows the process without moving the vertices around. We will arbitrarily
select S as our start vertex.

332 Minimum-Weight Spanning Trees and Shortest Paths

Iteration Reached W Unreached V \W Selected New Reached
Edge Vertex

Start ∅ S,R,W,M,O, P, F −− −−
0 S R,W,M,O, P, F SP P
1 S, P R,W,M,O, F PM M
2 S, P,M R,W,O, F MR R
3 S, P,M,R W,O, F RF F
4 S, P,M,R, F W,O MO O
5 S, P,M,R, F,O W FW W
6 S, P,M,R, F,O,W ∅ −− −−

Reached and Unreached Vertices through Two Iterations

Reached

Unreached

S

W

O

R

F

M

P

T1 = iteration 1

S

P

W

O

R

F

M

T2 = iteration 2

Reached

Unreached

Complete Prim’s

F

W

O

R

M

S

P

T1 = iteration 1

1
F

W

O

R

M

S

P

T2 = iteration 2

1
6

Shortest Paths 333

F

W

O

R

M

S

P

T1 = iteration 3

1
6

2
F

W

O

R

M

S

P

T2 = iteration 4

1
6

2
5

F

W

O

R

M

S

P

T1 = iteration 5

1
6

2
5

3

F

W

O

R

M

S

P

T2 = iteration 6 = n− 1

1
6

2
5

3

4

■

23.2.3 Kruskal’s and Prim’s Compared

For a graph of order n and sizem, it can be shown that the runtime of Kruskal’s
is O(m log n) whereas Prim’s runtime is O(m+n log n). Thus Kruskal’s is best
for a sparse graph and Prim’s would be quicker for a dense graph.

23.3 Shortest Paths

Paths were introduced in Section 21.1 and are an essential part of the notion
of distance in a graph.

Definition 23.3.1 (Distance in a Graph). Let G be a weighted graph with
vertex set V = V (G). Then the distance between two vertices u, v of G is

dG(u, v) = d(u, v) := total weight of a shortest path in G.

If there does not exist a u, v path in G, then d(u, v) :=∞.

Distance is defined in an unweighted graph G by counting the number of
edges in each path (in other words, assigning each edge a weight of 1 and
using the above definition). In a digraph, directed paths are considered.

Example 23.3.2 considers finding a shortest path in the weighted directed
graph is shown in Figure 23.1. The following sections present different means
to obtain a shortest path.

334 Minimum-Weight Spanning Trees and Shortest Paths

a

b

c

d

e

f

digraph D

2

3

1

1

5 4

7 1 8

2

FIGURE 23.1
Finding a shortest path in D.

23.3.1 Dijkstra’s Algorithm

One way to obtain a shortest path between vertices is by Dijkstra’s Algorithm.

Algorithm 23.3.1 Dijkstra’s Algorithm to Obtain Shortest Paths.

Objective: For a given vertex u in a weighted graph G, obtain the distances
from u to v for all v in V (G).

Input: A weighted directed or undirected graph G.
Require: Let w(x, y) be the weight of the edge joining vertices x and y. If

no edge xy exists, put w(x, y) :=∞.
1: Select u in V (G) and put S := {u} noting that d(u, u) = 0.
2: Put t(u) := 0 and t(z) := w(u, z) for all z ≠ u in V (G).
3: while S ̸= V (G) do
4: select a w in V (G)\S such that t(w) = minz/∈S{t(z)} (ties are settled

arbitrarily)
5: put S := S ∪ {w}
6: for all z not in S, update t(z) := min{t(z), t(w) + w(w, z)}
7: end while

Output: For all v in V (G), t(v) = d(u, v).

Note that the graph G can undirected or directed. What matters is if y
can be reached directly from x.

Example 23.3.2. Use Dijkstra’s Algorithm to find the shortest a− f path in
the graph D shown in Figure 23.1.

Shortest Paths 335

Solution. Iteration 0 S = {a} and proceeding out of a:

v ∈ V (D) Update t(v) Selection Shortest a− v path

a t(a) = 0 already in S a
b t(b) = w(a, b) = 2 select a, b
c t(c) = w(a, c) = 3 a,+
d t(d) = w(a, d) =∞ a,+
e t(e) = w(a, e) =∞ a,+
f t(f) = w(a, f) =∞ a,+

Update S := {a, b}. Since b has been selected, the algorithm has now returned
d(a, b).

Iteration 1 S = {a, b} and proceeding out of b:

v ∈ V (D) Update t(v) Selection Shortest
a− v path

a t(a) = 0 already in S a
b d(a, b) = t(b) = 2 already in S a, b
c t(c) = min{t(c), t(b) +

w(b, c)} =
min{3, 2 + 5} = 3

a, c,+

d t(d) = min{t(d), t(b) +
w(b, d)} =
min{∞, 2 + 1} = 3

arbitrarily select a, b, d

e t(e) = min{t(e), t(b) +
w(b, e)} =
min{∞, 2 + 7} = 9

a, b, e,+

f t(f) = min{t(f), t(b) +
w(b, f)} =
min{∞, 2 +∞} =∞

a, b,+

Update S := {a, b, d}. Since d has been selected, the algorithm has now re-
turned d(a, d).

Iteration 2 S = {a, b, d} and proceeding out of d:

v ∈ V (D) Update t(v) Selection Shortest
a− v path

a t(a) = 0 already in S a
b d(a, b) = t(b) = 2 already in S a, b
c vt(c) = min{t(c), t(d) +

w(c, d)} = min{3, 3 +
∞} = 3

select a, c

d d(a, d) = t(d) = 3 already in S a, b, d
e t(e) = min{t(e), t(d) +

w(d, e)} =
min{9, 3 + 4} = 7

a, b, d, e,+

f t(f) = min{t(f), t(d) +
w(d, f)} =
min{∞, 3 + 8} = 11

a, b, d, f,+

336 Minimum-Weight Spanning Trees and Shortest Paths

Update S := {a, b, c, d}. Since c has been selected, the algorithm has now
returned d(a, c).

Iteration 3 S = {a, b, c, d} and proceeding out of c:

v ∈ V (D) Update t(v) Selection Shortest
a− v path

a t(a) = 0 already in S a
b d(a, b) = t(b) = 2 already in S a, b
c d(a, c) = t(c) = 3 already in S a, c
d d(a, d) = t(d) = 3 already in S a, b, d
e t(e) = min{t(e), t(c) +

w(c, e)} =
min{7, 3 + 1} = 4

select a, c, e

f t(f) = min{t(f), t(c) +
w(c, f)} =
min{11, 3 +∞} = 11

a, b, d, f,+

Update S := {a, b, c, d, e}. Since e has been selected, the algorithm has now
returned d(a, e).

Iteration 4 S = {a, b, c, d, e} and proceeding out of e:

v ∈ V (D) Update t(v) Selection Shortest
a− v path

a t(a) = 0 already in S a
b d(a, b) = t(b) = 2 already in S a, b
c d(a, c) = t(c) = 3 already in S a, c
d d(a, d) = t(d) = 3 already in S a, b, d
e d(a, e) = t(e) = 4 already in S a, c, e
f t(f) = min{t(f), t(e) +

w(e, f)} =
min{11, 4 + 2} = 6

select a, c, e, f

Update S := {a, b, c, d, e, f}. Since f has been selected, the algorithm has now
returned d(a, f).

Halt Since S = V (D) the algorithm terminates and we have the following
d(a, v) and shortest a, v paths:

v ∈ V (D) Distances Shortest a− v path

a d(a, a) = 0 a
b d(a, b) = 2 a, b
c d(a, c) = 3 a, c
d d(a, d) = 3 a, b, d
e d(a, e) = 4 a, c, e
f d(a, f) = 6 a, c, e, f

■

Shortest Paths 337

23.3.2 A Linear Programming Approach to Shortest Paths

We may also find a shortest path by solving a linear programming problem
over a network flow. The approach is summarized in the following Highlight.

Highlight 23.3.3 (Shortest Path as a Linear Programming Problem). Let G
be a weighted directed or undirected graph. To introduce a linear programming
problem to find a shortest u− v path in G:

1. Introduce a decision variable Xij for each edge ij in G.

2. Include the nonnegativity constraints Xij ≥ 0 for every edge’s decision
variable.

3. Introduce flow constrains for each vertex z in G by

(sum of in-edge variables X∗)− (sum of out-edge variables X∗)

= −1 for source u, (23.4)

(sum of in-edge X∗)− (sum of out-edge X∗)

= 0 for non-source/sink vertices , (23.5)

(sum of in-edge X∗)− (sum of out-edge X∗) = 1 for sink v. (23.6)

4. Lastly,

min
∑

Xij ,ij∈E(G)

wijXij (23.7)

where wij is the weight of edge ij in the graph G.

Example 23.3.4.
Rework Example 23.3.2 but by modeling it as a network flow problem.

Solution. The graph with flow constraints introduced is presented in Figure
23.2. The linear programming model of the problem is then

min 2Xab +3Xac +5Xbc +1Xbd +7Xbe +1Xce +1Xdc +4Xde +8Xdf +2Xef

(23.8)
subject to

−Xab −Xac = −1 (flow constraint for vertex a) (23.9)

Xab −Xbc −Xbd −Xbe = 0 (flow constraint for vertex b) (23.10)

Xac +Xbc +Xdc −Xce = 0 (flow constraint for vertex c) (23.11)

Xbd −Xdc −Xde −Xdf = 0 (flow constraint for vertex d) (23.12)

Xbe +Xce +Xde −Xef = 0 (flow constraint for vertex e) (23.13)

Xdf +Xef = 1 (flow constraint for vertex f) (23.14)

Xij ≥ 0 (23.15)

338 Minimum-Weight Spanning Trees and Shortest Paths

a

b

c

d

e

f

weighted digraph D

(−1)

(0)

(0)

(0)

(0)

(1)
2

3

1

1

5 4

7 1 8

2

FIGURE 23.2
Flow constraints (f) for a shortest path in D.

FIGURE 23.3
The Excel setup for an LP solution for finding the distance in Example 23.3.4.

The Excel setup and solution are presented in Figures 23.3, 23.4, and 23.5.
Note that the solution not only includes the minimum distance but also a
shortest path.

■

Though Example 23.3.2 and Example 23.3.4 were both done on a directed
graph, each technique is easily applicable to any undirected graph. Applying
Dijkstra’s Algorithm on an undirected graph is straight forward as what mat-
ters are the edges that reach the remaining vertices not in S from the vertex
being considered. Regarding the linear programming approach, we would need
to introduce two directed edges uv and vu for each undirected edge. Note fur-
ther that as long as the edge weights are positive, there will be no need to
return to the source or exit the sink. This would mean that if we are regarding
vertex a as the source and, for example, a has the neighbor b, then the model
only needs to introduce the directed edge ab and there is no need to introduce
the directed edge ba.

Shortest Paths 339

FIGURE 23.4
Using Solver for an LP solution for finding the distance in Example 23.3.4.

FIGURE 23.5
Excel’s solution for an LP modeling of distance in Example 23.3.4.

Further note that as we will see in Section 24.2, as long as the coefficients
involved in the network are integer3, solving a linear programming problem
over a network flow will always produce integer solutions. Thus, in Highlight
23.3.3, there is no need to drastically complicate4 the problem by
introducing the requirement that the decision variables must be
integer.

3Since a collection of rational numbers can be scaled to a set of integers, “integer” can
be replaced by “rational”.

4Recall from Chapter 6 that the Simplex Method is used to solve LP problems over the
reals will terminate with the global solution in a finite number of iterations. The existing
heuristics used to solve ILP problems are not guaranteed to converge to a solution (see
Chapter 8).

340 Minimum-Weight Spanning Trees and Shortest Paths

a

b

c

d

e

f

2

3

1

1

5 4

7 1 8

2

FIGURE 23.6
Weighted graph G for Exercises 23.2, 23.3, 23.4, 23.5.

23.4 Exercises

Exercise 23.1. A metric space is a set S together with a function d : S →
R+

5 such that for any a, b, c in S

1. d(a, a) = 0,

2. d(a, b) > 0 whenever a ̸= b,

3. d(a, b) = d(b, a), and

4. d(a, c) ≤ d(a, b) + d(b, c).

The function d in a metric space is known as a metric.
Let G be a weighted connected graph with vertex set V and let d(u, v) be

the distance between vertices a and b in G. Show that (V, d) is a metric space.
Further, show that if G is not connected or is a digraph, that (V, d) may fail
to be a metric space.

Exercise 23.2. Use Kruskal’s Algorithm to find a minimum weight spanning
tree for the graph G Figure 23.6.

Exercise 23.3. Use Prim’s Method to find a minimum weight spanning tree
for the graph G Figure 23.6.

Exercise 23.4. Use Dijkstra’s Algorithm to find the distance from a to f for
the graph G in Figure 23.6. Include in your answer a shortest a− f path.

Exercise 23.5. Find the distance from a to f for the graph G in Figure 23.6
by modeling the problem as a linear programming problem over a network flow.
Include in your answer a shortest a− f path.

Exercise 23.6. Use Kruskal’s Algorithm to find a minimum weight spanning
tree for the graph H Figure 23.7.

5Recall that R+ is the set of nonnegative real numbers.

Exercises 341

a b c

d

efg

5

2 3

7

4 5

8

4

1

FIGURE 23.7
Weighted graph H for Exercises 23.6, 23.7, 23.8, 23.9.

Exercise 23.7. Use Prim’s Method to find a minimum weight spanning tree
for the graph H Figure 23.7.

Exercise 23.8. Use Dijkstra’s Algorithm to find the distance from b to f for
the graph H in Figure 23.7. Include in your answer a shortest b− f path.

Exercise 23.9. Find the distance from b to f for the graph H in Figure 23.7
by modeling the problem as a linear programming problem over a network flow.
Include in your answer a shortest b− f path.

Exercise 23.10. Show that Dijkstra’s Algorithm does not unnecessarily find
the shortest path if negative edge weights are allowed in a graph.

Exercise 23.11. What is the worst case runtime complexity of Dijkstra’s
Algorithm on complete graphs?

24

Network Modeling and the Transshipment
Problem

24.1 Introduction of the Problem

Numerous supply chain logistical problems can be modeled very nicely with
networks. Determining an efficient way to ship a product from production
facilities, to distribution centers, then to the retail stores is such an example.
These scenarios, though, are neither shortest path problems, minimum weight
spanning trees, nor maximum flows, and thus, require their own approach. We
illustrate this with the following example:

Example 24.1.1. Jamie’s SunLov’d Organic Oranges grows oranges at five
groves in Florida: Venice, Clearwater, Nokomis, Kissimmee, and Orange City.
The oranges are then shipped to be cleaned, sorted, and packaged at process-
ing plants in Bradenton and Sanford. From these facilities, the packaged,
ready to sell oranges are taken to regional distribution centers in Tallahas-
see, Gainesville, and Fort Myers where they are available to regional local
retailers. Bradenton and Sanford also double as regional distribution centers.
Industry standards are that production is measured in the number of 90 pound
boxes produced and to keep the problem simple, we will assume production =
demand. Details are

Daily Production Capacity Daily Demand
Venice 1400 Tallahassee 2500

Clearwater 900 Bradenton 4000 Bradenton 1000
Nokomis 1800 Gainesville 2000
Kissimmee 1700 Sanford 4500 Sanford 1100
Orange City 2200 Fort Meyers 1400

DOI: 10.1201/9780367425517-24 342

https://doi.org/10.1201/9780367425517-24

Introduction of the Problem 343

Per box shipping costs (in cents) between the sites are

From Cost To

Venice
35.6 Bradenton
170.4 Sanford

Clearwater
44.8 Bradenton
133 Sanford

Nokomis
34.1 Bradenton
169 Sanford

Kissimmee
105.2 Bradenton
47.6 Sanford

Orange City
146 Bradenton
12.7 Sanford

Bradenton
314.1 Tallahassee
167.2 Gainesville
413.6 Fort Meyers

Sanford
285.6 Tallahassee
138.7 Gainesville
186.6 Fort Meyers

What shipping schedule will meet demand but minimize shipping costs for
Jamie’s SunLov’d Organic Oranges?

We will begin solving this logistics problem for Jamie’s SunLov’d Organic
Oranges by first introducing a network modeling the situation. It is important
to note that in Graph Theory, all we care about in that there are vertices
and that they either are edges between vertices or not; namely, the vertices
representing the cities in the problem need not be positioned to accurately
represent geographical facts. A network modeling the problem is then (all
edges are forward edges)

Orange City

Kissimmee

Nokomis

Clearwater

Venice

Bradenton

Sanford

Fort Meyers

Gainesville

Tallahassee

−2200

−1700

−1800

−900

−1400

≤ 4000

+1000

≤ 4500

+1100

+1400

+2000

+2500

0.356

1.704

0.448

1.33

0.341

1.69

1.052

0.476

1.46

0.127

3.141

2.856

1.672

1.387

4.136

1.866

344 Network Modeling and the Transshipment Problem

The decision variables in this problem will be how many boxes of oranges
to ship along each route, namely

Xij = the number of 90 pound boxes shipped from i to j

where i and j are facilities denoted by the first letter of the location. Notice
in these problems both the edges and the vertices are weighted. The edges are
weighed with the per unit shipping cost along the represented route whereas
the vertices’ weights have to do with production, capacity, and demand lev-
els. We have followed convention and weighed the production vertices with
negative values as those amounts are leaving the vertices and weighed the dis-
tribution centers with positive values as we need these net amounts to stay.
The problem is then to

Maximize C = 0.356XV B + 1.704XV S + 0.448XCB + 1.33xCS

+ 0.341XNB + 1.69XNS + 1.052XKB + 0.476XKS

+ 1.46XOB + 0.127XOS + 3.141XBT + 1.672XBG

+ 4.316XBF + 2.856XST + 1.387XSG + 1.866XSF

Subject to (constraints at production)

−XV B −XV S ≥ −1400 (24.1)

−XCB −XCS ≥ −900 (24.2)

−XNB −XNS ≥ −1800 (24.3)

−XKB −XKS ≥ −1700 (24.4)

−XOB −XOS ≥ −2200 (24.5)

(constraints at processing)

XV B +XCB +XNB +XKB +XOB −XBT −XBG −XBF ≥ 1100 (24.6)

XV S +XCS +XNS +XKS +XOS −XST −XSG −XSF ≥ 1000 (24.7)

(constraints at distribution)

XBT +XST ≥ 2500 (24.8)

XBG +XSG ≥ 2000 (24.9)

XBF +XSF ≥ 1400 (24.10)

(and, lastly, capacity constraints)

XV B +XCB +XNB +XKB +XOB ≤ 4500 (24.11)

XV S +XCS +XNS +XKS +XOS ≤ 4000 (24.12)

with Xij ≥ 0.

Introduction of the Problem 345

FIGURE 24.1
The Excel setup for Jamie’s SunLov’d Organic Oranges.

Of course, the Xij need to be nonnegative and integer, but – for now –
let us only worry about the nonnegativity requirement. We will address the
integer constraints in the next section.

In establishing the constraints, we have followed the convention that edges
flowing into a vertex are labeled with a + (they are bringing commodities in)
but exiting edges have a − (those resources are leaving). It is, of course, the
case that each of the production constraints −Xij −Xkl ≥ −K is mathemati-
cally equivalent to Xij +Xkl ≤ K and these inequalities hold because we can
not ship more boxes than the groves are producing. Likewise, since we want to
meet the given demand at the distribution centers, the flow into their vertices
must be at least the level of demand (and hence these constraints are of the
form ≥). The Excel set up of the problem is shown in Figure 24.1.

Since we are using Excel to solve the problem, forming the objective func-
tion is a good time to use Excel’s SUMPRODUCT function. This is illustrated
in Figure 24.2. Figure 24.3 show all the constraints for Jamie’s SunLov’d Or-
ganic Oranges inclulding the (default in Excel) nonnegativity constraint.

Solver’s optimal solution is given in Figure 24.4.
Notice that we obtained an integer solution without requiring the decision

variables to be integer. This was not just a stroke of luck and is the subject
of the next section.

346 Network Modeling and the Transshipment Problem

FIGURE 24.2
Excel’s SUMPRODUCT in Jamie’s SunLov’d Organic Oranges.

FIGURE 24.3
Constraints in Jamie’s SunLov’d Organic Oranges.

The Guarantee of Integer Solutions in Network Flow Problems 347

FIGURE 24.4
Optimal distribution for Jamie’s SunLov’d Organic Oranges.

24.2 The Guarantee of Integer Solutions in Network
Flow Problems

We have seen that a transshipment problem is answered by introducing a linear
programming model with inequality constraints. We know from the Funda-
mental Theorem of Linear Programming (Theorem 17.2.2) that a solution is
a corner point of the feasible region. Fortunately, in the situation modeling
transshipment problems (with the right conditions – which are always present
in applications), we do get that all the corner points are integer valued. This
comes from the fact that the matrix corresponding to the left-hand side of the
constraints is totally unimodular, which was discussed in Section 4.4.2.

Let us walk through our example in building the theory behind integer
solutions in transshipment problems. To match standard notation, we will
start by rewriting all the constraints for Jamie’s Organic Sun Lov’d Oranges
to be of the form ≤, Thus we have as the model:

Maximize C = 0.356XV B + 1.704XV S + 0.448XCB + 1.33xCS

+ 0.341XNB + 1.69XNS + 1.052XKB + 0.476XKS

+ 1.46XOB + 0.127XOS + 3.141XBT + 1.672XBG

+ 4.316XBF + 2.856XST + 1.387XSG + 1.866XSF

(24.13)

348 Network Modeling and the Transshipment Problem

Subject to
(constraints at production)

XV B +XV S ≤ 1400 (24.14)

XCB +XCS ≤ 900 (24.15)

XNB +XNS ≤ 1800 (24.16)

XKB +XKS ≤ 1700 (24.17)

XOB +XOS ≤ 2200 (24.18)

(constraints at processing)

−XV B −XCB −XNB −XKB −XOB +XBT +XBG +XBF ≤ 1100
(24.19)

−XV S −XCS −XNS −XKS −XOS +XST +XSG +XSF ≤ 1000
(24.20)

(constraints at distribution)

−XBT −XST ≤ −2500 (24.21)

−XBG −XSG ≤ −2000 (24.22)

−XBF −XSF ≤ −1400 (24.23)

(and, lastly, capacity constraints)

XV B +XCB +XNB +XKB +XOB ≤ 4500 (24.24)

XV S +XCS +XNS +XKS +XOS ≤ 4000 (24.25)

with Xij ≥ 0.

The constraints can be succinctly written in the form Ax ≤ b where b is a
column vector with the right hand side constants as it components. Suppose A
is an m×n matrix; that is, it has m rows (one for each constraint inequality)
and n columns (one for each decision variable; the flows on the edges), Then
A ∈ Rm×n and b ∈ Rm. Define

F = F (A,b) := {x ∈ Rn|Ax ≤ b,x ≥ 0};

i.e. the feasible region of the linear programming problem.
A =



const. XV B XV S XCB XCS XNB XNS XKB XKS XOB XOS XBT XBG XBF XST XSG XSF
(24.14) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(24.15) 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
(24.16) 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
(24.17) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
(24.18) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

(24.19) −1 0 −1 0 −1 0 −1 0 −1 0 1 1 1 0 0 0
(24.20) 0 −1 0 −1 0 −1 0 −1 0 −1 1 1 1 0 0 0

(24.21) 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0
(24.22) 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0
(24.23) 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1

(24.24) 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
(24.25) 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0



The Guarantee of Integer Solutions in Network Flow Problems 349

Key to the result is understanding how transshipment problems are mod-
eled. The decision variables in the model represent the flow on an edge between
two vertices in the model’s graph. Let A∗ be the matrix of coefficients on the
left-hand side of the constraints 24.14 through 24.23. As there is never more
than one edge between any two vertices, every column of A will have nor more
than two non-zero entries (if so, these entries are exactly +1 and −1).

Thus we have by Theorem 4.4.10 that A∗ is totally unimodular. Let
A be the matrix A∗ with rows representing the capacity constraints from
the distribution centers into A∗. The addition of these rows do not prevent
the matrix from continuing to be a totally unimodular matrix (note that the
reference theorem is sufficient conditions only and not an if-and-only-if).

As we saw in the Jamie’s SunLov’d Organic Oranges example in the pre-
vious section, transshipment problems involve solving a linear programming
problem. The corresponding system we solve will turn out to always have an
integer solution provided the flow capacities at the vertices are integer valued.
The keys in this result lies in the involved matrices being totally unimodular
(introduced in Section 4.4.2).

Theorem 24.2.1. Consider the linear system Ax = b where A is an n × n
nonsingular square matrix with integer entries and b also having only integer
components. Then x is integer if and only if A is totally unimodular.

Proof. (⇐) Suppose A is totally unimodular. Since A is nonsingular, it has
an inverse and det(A) ̸= 0, and thus x = A−1b. By Cramer’s Rule (Theorem
4.3.24), the ith entry of x is

xi =
det(Ai)

det(A)
.

As the matrix Ai is the matrix A with its ith column replaced by b, we can
expand on the ith column Ai to determine det(Ai). The remaining matrices
have determinant 0,±1 since A is totally unimodular and as the column we
are using for expansion has integer entries, det(Ai) is clearly an integer. Since
A is unimodular (it is totally unimodular, but as it as an inverse, 0 is ruled
out as a value of its determinant), det(A) = ±1 and, thus, the ratio giving xi

by Cramer’s Rule must be an integer.
(⇒) Suppose x has only integer components for all integer b with Ax = b.

Let b = [0, . . . , 0, 1, 0, . . . , 0]; a vector with nonzero entries except for a 1 in
the ith component. Since x = A−1b and b = [0, . . . , 0, 1, 0, . . . , 0], x is the ith

column of A−1. Thus the ith column of A−1 is integer. But this is true for
any i, 0 ≤ i ≤ n, therefore all entries of A−1 are integer, giving det(A−1) is
integer.

350 Network Modeling and the Transshipment Problem

24.3 Exercises

Exercise 24.1. Jackson Brewing makes three great beers: a stout, an IPA,
and a bitter. The brewery has three locations at which it can brew: Pittsburgh,
Knoxville, and Memphis. Given that each location can only make one kind of
beer and that Neilan wants to continue making each of the three beers, Neilan
is interested in assigning production in way that minimizes cost. The cost of
brewing each beer at each location is given in the following table:

Stout IPA Bitter

Pittsburgh 1.22 0.95 0.88

Knoxville 1.13 0.91 0.77

Memphis 1.29 0.99 0.92

i. Draw a network flow diagram representing the problem (be sure to clearly
state what the vertices and edges represent).

ii. State the LP problem modeling this situation.

iii. For this problem, is it necessary to require the decision variables to be
integer? Why or why not?

iv. Answer the question using any software of your choice. Submit a screen-
shot of your program’s output.

Exercise 24.2. Rumpler Kayaks produces quality kayaks at three locations:
Minneapolis, Pittsburgh, and Tucson. Additionally, the company has ware-
houses in Atlanta, Boston, Chicago, and Denver. The table below has the
number of kayaks each warehouse demands as well as their respective capac-
ities. As well, the table list the per kayak cost for shipping from a particular
plant to each warehouse. Rumpler is interested in in fulfilling the warehouses’
demands at a minimum cost.

Atlanta Boston Chicago Denver Capacity

Minneapolis 6.00 5.60 2.20 4.00 10,000

Pittsburgh 3.60 3.00 2.80 5.80 15,000

Tucson 6.50 6.80 5.50 4.20 15,000

Demand 8000 10,000 12,000 9,000

i. Draw a network flow diagram representing the problem (be sure to clearly
state what the vertices and edges represent).

ii. State the LP problem modeling this situation.

iii. For this problem, is it necessary to require the decision variables to be
integer? Why or why not?

iv. Answer the question using any software of your choice. Submit a screen-
shot of your program’s output.

25

The Traveling Salesperson Problem

Large portions of this chapter, including many of the figures, are taken from
my student Corinne Brucato Bauman’s Master Thesis [8].

25.1 History of the Traveling Salesperson Problem

The Traveling Salesperson Problem considers finding an optimal route in
which a salesperson can visit the cities he or she needs to (each city once)
then return home. This problem can be considered to be closely related to
finding a closed knight’s tour on a chessboard. That is, a sequence of legal
moves by a knight that visits every square of a chessboard. A knight’s tour is
considered closed if the knight ends up one move away from where it started.
In this sense, one can say the Traveling Salesperson Problem dates back to the
9th century when an example of such a tour appeared in the work of Kashmiri
poet Rudrata [64]. It is very likely the chess players and many of the computer
scientists reading this are very familiar with this problem. Note that Leonhard
Euler presented a solution to the Knight’s Tour problem in 1759, which he
later published in 1766 [23].

The first example of such a problem appeared in the German handbook
Der Handlungsreisende – Von einem alten Commis – Voyageur for salesman
traveling through Germany and Switzerland in 1832 as explained in [10]. This
handbook was merely a guide but did contribute to identifying the problem
as an important one.

Much of the earliest work done on this problem was performed by Irish
mathematician Sir William Rowan Hamilton and by the British mathemati-
cian Thomas Penyngton Kirkman in the 19th century. A good summary of
the mens’ work is presented in [2]. Hamilton even developed a board game
based on the problem, his Icosian Game.

In Hamilton’s Icosian Game, players are to find a tour visiting the 20
vertices along the available edges in in the dodecahedron graph as seen Figure
25.1. The game was played by having Player 1 place pegs 1 through 5 in
order on adjacent vertices. A sample Player 1 move is shown in Figure 25.2.
Player 2 would win if they could place pegs 6 through 20 in such a way to
complete a Hamiltonian circuit. The game was evidently not very popular as

DOI: 10.1201/9780367425517-25 351

https://doi.org/10.1201/9780367425517-25

352 The Traveling Salesperson Problem

FIGURE 25.1
Hamilton’s Icosian game.

FIGURE 25.2
Sample start.

FIGURE 25.3
The platonic solid: Dodecahedron.

children complained that it was too easy [10] (it is the case that every starting
position of the has a winning solution). The Puzzle Museum [46] has picture
of a complete version of the original game.

It is worthwhile to explain the names used in describing Hamilton’s game.
As the graph in Figure 25.1 has 20 vertices, Hamilton referred to it as an
icosian as eikosi (eiko) is an Ancient Greek word meaning “twenty”.
This graph is the planar representation1 of the twelve-faced platonic solid
dodecahedron from the Greek dodekaâdron where dodeka means “twelve”
and hedra (âdra) can mean “face of a geometrical solid”. A dodecahedron (the
12-sided die for my D&D friends) is pictured in Figure 25.3. The dodecahedron
is one of the five Platonic solids and each of the solids has a representation as
a planar graph2.

The first paper related to the subject seems to be Hassler Whitney’s 1931
paper in which the conclusion of the first theorem is “there exists a circuit

1By planar graph we mean that we can draw the graph in on a piece of paper or any
other plane in some way and not have any edges cross.

2V − E + F = 2 anyone?

The Problem 353

which passes through every vertex of the graph” [63]. The terms “Hamiltonian
cycle” and “Traveling Salesperson” are not used. The first break-through on
the problem was due to George Dantzig, Delbert Ray Fulkerson, and Selmer
M. Johnson in 1954 while working at the RAND Corporation [14]. In this
paper, the team found a provable solution to finding the shortest tour visit-
ing Washington, D.C. and the 48 contiguous state capitals. The group also
acknowledges Merrill Flood of Columbia University for “stimulating interest
in the traveling-salesmen problem in many quarters” [14].

To date, no solution is known, but many good heuristics exist. The diffi-
culty of the problem was placed on firm ground in Richard M. Karp’s 1972
Paper [21] (this is the paper with Karp’s 21 NP-complete problems). In this
work, Karp established that finding a minimal weight Hamiltonian cycle is
NP-complete, which implies the NP-hardness of the Traveling Salesperson
Problem. In other words, Karp’s paper formally explains why finding an op-
timal tour is computationally laborious.

25.2 The Problem

Suppose a salesperson must visit a single client in each of n − 1 other cities.
Our salesperson would like to return home after the visits and, of course,
it is highly desirable to determine a route that enables the salesperson to
make these visits with the least possible amount of driving. In the language
of mathematics, we seek a minimum weight Hamiltonian cycle (or tour) on a
graph with n vertices.

Of course, a brute force approach will work in theory, but it will not take
long until the problem becomes intractable. Consider the complete graph Kn

on n vertices. An easy application of the Multiplication Principle (Theorem
20.2.1) gives that there are (n−1)! Hamiltonian cycles on Kn, but if we regard
going forward or backwards through the same sequence of cities as the same

tour, then we can reduce this to (n−1)!
2 . For various orders n, the number of

Hamiltonian cycles on Kn is given in Table 25.1. Of course, if the graph is
not complete, then we have the additional concern as to whether a tour is
possible.

25.3 Heuristic Solutions

As stated when discussing the History of the problem, no technique yet exists
to find a globally optimal solution in a reasonable amount of time (nor has it

354 The Traveling Salesperson Problem

TABLE 25.1
Number of Distinct Tours in a Complete Graph with n Vertices

n Number of Distinct Hamiltionian Cycles on Kn = (n− 1)!/2

3 1

4 3

5 12
6 60

7 360

8 2,520

9 20,160

10 181,440
* 2,852,592,966 (miles from Earth to Neptune on 1 February 2022)

15 43,589,145,600
* $27, 752, 835, 868, 445.35 (U.S. National Debt, 1 February 2022)

20 60,822,550,204,416,000

* 4.35× 1017 (estimated age of the universe in seconds)

30 4,420,880,996,869,850,977,271,808,000,000

*
8.7 × 1034 (number of floating point operations Oak Ridge Na-
tional Laboratory’s
supercomputer Summit would have preformed if operating at
peak since the Big Bang)

40 10,198,941,040,598,721,679,320,140,869,951,448,678,400,000,000
50 304,140,932,017,133,780,436,126,081,660,647,688,443,776,415,689,

605,120,000,000,000

* 80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,
883,277,824,000,000,000,000
(number of unique ways to deal all 52 cards from a standard deck
= 52! ≈ 8× 1064)

60 ≈ 1.3868× 1080

* 1082 (estimated number of atoms in the known universe)

75 ≈ 1.65394× 10107

100 ≈ 4.66631× 10155

been proven that one does not exist). In this section, we will present some of
the tractable heuristics that attempt to find a tour of minimum weight.

25.3.1 Nearest Neighbor

The first technique we will consider is a greedy algorithm (see Definition
23.2.2). This technique is not to be confused with the k-Nearest Neighbor
supervised learning algorithm used in Machine Learning.

Heuristic Solutions 355

TABLE 25.2
Distances (in Miles) Between Themed Parks in Future World in Example
25.3.1

Site Western Medieval Roman Spa (F) Future

World World World World World

(R) Resort 8 2 12 13 5
(W) Western World – 8 5 13 4
(M) Medieval World – – 3 6 11
(O) Roman World – – – 9 10
(P) Spa World – – – – 15

Algorithm 25.3.1 Nearest Neighbor Heuristic for Finding a (Local) Mini-
mum Weight Tour.

Objective: Find a minimum-weight Hamiltonian cycle H in a weighted, con-
nected graph or digraph G.

Input: A weighted, connected graph G.
1: Consider all vertices of G as unvisited or unreached.
2: Arbitrarily select a start vertex, u of G. Add u to H.
3: Of all the edges out of u to the unvisited vertices, select an edge of min-

imum weight, say edge uv and add it to H in an ordered manner. Settle
ties arbitrarily.

4: Consider v as now visited and remove v from the set of unvisited vertices.
5: Repeat 3 with the last vertex selected until all vertices are visited.
6: Let w be the very last vertex visited. Add edge wu to H.

Output: A Hamiltonian cycle or tour H of locally minimum weight in G.

For an example, let us revisit Delos’ Future World from Example 23.2.1.

Example 25.3.1. The Delos Corporation has an amusement park with a
central luxury resort and five separate themed locations: Western World, Me-
dieval World, Roman World, Spa World (“where old age and pain have been
eliminated”), and Future World3.

Suppose a guest would like to do a quick tour of the themed locations in one
day before deciding how to plan their visits during their stay. We will assume
a constant rate at which Future World transports its guests, so minimizing
tour distance will be our goal. Distances between the resort and locations are
given in Table 25.2.

Solution. We will model the problem with the following graph where the ver-
tices represent the resort and themed locations and the edges are weighed by

3This example borrows from the films Westworld [62] and its sequel Futureworld [27].

356 The Traveling Salesperson Problem

their distance in miles. Note this graph and Table 25.2 are different from those
in Example 23.2.1 because we are no longer concerned with the water source.
Also note that this graph need only be a graph on the sense of Definition
21.1.2; that is, it has vertices and there is either an edge between distinct ver-
tices or there is not (in this cast, all possible edges exist). For this algorithm,
we do not need the graph to be drawn as the sites would appear on a map.

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

If the guest starts a the resort, then applying the Nearest Neighbor Algo-
rithm gives the tour

R
2−→M

3−→ O
5−→W

4−→ F
15−→ P

13−→ R (25.1)

which has a total weight (distance) of 42. ■

Example 25.3.1 illustrates a major drawback with the Nearest Neighbor
Algorithm: we may get stuck at the end with large edges. It also turns out
that we may get different tours depending on where we start, as shown in the
next examples.

Example 25.3.2. For this example, we will illustrate each step. Consider
finding a minimum tour on the following weighted K5 by starting at vertex A:

Solution. Looking out of vertex A, we see that we can choose from four edges
to start. These are illustrated with the darker dotted lines in Figure 25.5.
Edge AD has the minimum weight of these four edges, so we accept it into

our tour H = A
6−→ D and consider D as now being visited. The result of the

first iteration of applying the Nearest Neighbor Algorithm to Example 25.3.2
is shown in Figure 25.6.

Heuristic Solutions 357

A

B

C

D

E

5

12

8

15

7

9

8

10

6

11

FIGURE 25.4
A weighted K5.

FIGURE 25.5
Choices leaving A.

FIGURE 25.6
First edge selection.

For the next iteration, we consider all the edges out of D to the remaining
unreached vertices. These are shown in Figure 25.7. Of the unvisited vertices,
C is the closest, so we travel there on edge DC. The current tour is now

updated to H = A
6−→ D

5−→ C and C has now been reached.
The current tour is now at C and the edges out of C to unvisited vertices

include CB and CE as edge CA would take us to a visited vertex. This is
pictured in Figure 25.8. Of these two edges, CE is the shortest and the tour

is now updated to H = A
6−→ D

5−→ C
9−→ E and E is now regarded as visited.

This third iteration is illustrated in Figure 25.9.
Since only one vertex remains unvisited, the last two edges added to the

tour are now determined. Visiting the remaining unreached vertex B and

returning to the start produces the tour H = A
6−→ D

5−→ C
9−→ E

11−→ B
8−→ A.

The tour resulting from applying the Nearest Neighbor Algorithm and starting

358 The Traveling Salesperson Problem

FIGURE 25.7
Choices leaving D.

FIGURE 25.8
Second edge selection.

FIGURE 25.9
Reaching vertex E.

FIGURE 25.10
Resulting tour.

at A is illustrated in Figure 25.10. Note that the total weight of this tour is
39. ■

As stated, we may get a different tour of a different weight by choosing a
different start vertex and applying the Nearest Neighbor Algorithm.

Solution. [Alternate solution to Example 25.3.2.]
For this application, let us suppose the traveling salesperson starts at ver-

tex E. The first two iterations of applying the Nearest Neighbor Algorithm
are to visit vertex A then vertex D. These steps are shown in Figures 25.11
and 25.12.

The resulting tour is H = E
7−→ A

6−→ D
5−→ C

12−→ B
11−→ E. The tour

resulting from applying the Nearest Neighbor Algorithm but starting at E is
illustrated in Figure 25.13. Note that the total weight of this tour is 41, which
differs from the previous tour.

■

Heuristic Solutions 359

FIGURE 25.11
Leaving the start E.

FIGURE 25.12
2nd step out of E.

FIGURE 25.13
Nearest neighbor algorithm’s tour for Example 25.3.2, but starting out of E.

25.3.2 Insertion Algorithms

We will now again employee a greedy algorithm, but this time from a different
perspective. In the Nearest Neighbor Algorithm, our salesperson greedily chose
to drive to the nearest unvisited city. Now, our salesperson will step back and
take a bird’s eye view. There are multiple version of this heuristic, but we will
focus on two: our salesperson will still have a start city, but at each iteration
she will build a tour by considering which unvisited city to add the existing
tour by choosing the city 1) closest to the current tour or 2) choose a city whose
inclusion increases the tour weight the least. In other words, the salesperson
will greedily build tours in one of two ways until all cities are visited.

360 The Traveling Salesperson Problem

25.3.2.1 Closest Insertion

Our first insertion heuristic will involve selecting the city closest to the current
existing tour. The technique is explained below.

Algorithm 25.3.2 Closest Insertion Heuristic for Finding a (Local) Minimum
Weight Tour.

Objective: Find a minimum-weight Hamiltonian cycle H in a weighted, con-
nected graph or digraph G.

Input: A weighted, connected graph G with di,j as the weight of edge ij.
1: Consider all vertices of G as unvisited or unreached.
2: Arbitrarily select a start vertex, v of G. Add v to the tour H.
3: (Selection Step) From the unvisited vertices, select a vertex v to visit such

that its distance to the current existing tour H is a minimum among all
unvisited cities. Settle ties arbitrarily.

4: (Insertion Step) Insert into the tour H edge ij which minimizes di,v +
dv,j − di,j . Settle ties arbitrarily.

5: Consider v as now visited and remove v from the set of unvisited vertices.
6: Repeat 3 until all vertices are visited.

Output: A Hamiltonian cycle or tour H of locally minimum weight in G.

We illustrate the Closest Insertion Algorithm with a return to the Future
World example.

Example 25.3.3. Consider finding a minimum weight tour for the visitor to
Future World whose visit starts from the Resort (see Example 25.3.1).

Start and Iteration 1

We begin at R and currently have a tour empty of edges. As M is the vertex
closest to the existing tour H = R, edge RM is added to H resulting in an

updated H = R
2−→ M

2−→ R. Figure 25.14 illustrates the start from the resort
R using the Closest Insertion Algorithm 25.3.2.

Iteration 2

Focusing on the visited vertices, the edges out of R to unvisited vertices have
weight 5, 8, 12, and 13 while those out of M to unvisited vertices have weight
11, 8, 3, 6. Thus vertex closest to the existing tour H = R → M → R is
vertex O. Currently our only choice is to add edges MO and OP to the tour
and there is no need to remove an edge from the existing tour H. Thus, at

the end of this iteration, we have the updated tour H = R
2−→ M

3−→ O
12−→ R.

Figure 25.15 illustrates this second iteration with the dashed lines represent
choices and the resulting tour illustrated with solid lines.

Heuristic Solutions 361

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.14
The weighted future world graph with start at R in Example 25.3.3.

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.15
Future world closest insertion iteration 2 in Example 25.3.3.

362 The Traveling Salesperson Problem

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.16
Future world closest insertion iteration 3 in Example 25.3.3.

Iteration 3

Of the unvisited vertices currently not on the tour, vertices F and W are the
closest to H. We arbitrarily choose F and must now consider how to insert it
into H.

Proposed Increase = di,v + dv,j − di,j Resulting Tour Include?
Removed Edge

RM 5 + 11− 2 = 14 ⟨R,F,M,O,R⟩ No
MO 11 + 10− 3 = 18 ⟨R,M,F,O,R⟩ No
OR 5 + 10− 12 = 3 ⟨R,M,O, F,R⟩ Yes

Thus, at the end of this iteration, we have the updated tour H = R
2−→

M
3−→ O

10−→ F
5−→ R. Figure 25.16 illustrates the tour resulting from this third

iteration with the dashed line representing the removed edge.

Iteration 4

Of the unvisited vertices not yet on the tour, vertex W is closest to the current
H. We now consider how to insert this into H.

Heuristic Solutions 363

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.17
Future world closest insertion iteration 4 in Example 25.3.3.

Proposed Increase = di,v + dv,j − di,j Resulting Tour Include?
Removed Edge

RM 8 + 8− 2 = 14 ⟨R,W,M,O, F,R⟩ No
MO 8 + 5− 3 = 10 ⟨R,M,W,O, F,R⟩ No
OF 4 + 5− 10 = −1 ⟨R,M,O,W,F,R⟩ Yes

Thus, at the end of this iteration, we have the updated tour H = R
2−→

M
3−→ O

5−→W
4−→ F

5−→ R. Figure 25.17 illustrates the tour resulting from this
fourth iteration.

Iteration 5

One unvisited vertex remains and we must determine how the least expensively
insert vertex P into H.

Proposed Increase = di,v + dv,j − di,j Resulting Tour Include?
Removed Edge

RM 13 + 6− 2 = 17 ⟨R,P,M,O,W,F,R⟩ No
MO 6 + 9− 3 = 12 ⟨R,M,P,O,W,F,R⟩ Yes
OW 9 + 13− 5 = 17 ⟨R,M,O,W,P.F,R⟩ No
WF 13 + 15− 4 = 24 ⟨R,M,O,W,P, F,R⟩ No
FR 15 + 13− 5 = 23 ⟨R,M,W,O, F, P,R⟩ No

364 The Traveling Salesperson Problem

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.18
Future world closest insertion final tour in Example 25.3.3.

As there are no remaining unvisited vertices, we are finished and the algo-

rithm has produced the tour H = R
2−→M

6−→ P
9−→ O

5−→W
4−→ F

5−→ R. Figure
25.18 illustrates the tour resulting from this final iteration.

25.3.2.2 Cheapest Insertion

Our second insertion heuristic is a slight variation of the first. This time,
we forgo selecting to add the unvisited vertex closest to the tour but rather
include the vertex whose insertion is the least costly.

Algorithm 25.3.3 Cheapest Insertion Heuristic for Finding a (Local) Mini-
mum Weight Tour.

Objective: Find a minimum-weight Hamiltonian cycle H in a weighted, con-
nected graph or digraph G.

Input: A weighted, connected graph G with edge weights di,j .
1: Consider all vertices of G as unvisited or unreached.
2: Arbitrarily select a start vertex, u of G. Add u to the tour H.
3: From the unvisited vertices, select a vertex v to visit such that its addition

to the tour increases the total existing tour weight the least. Settle ties
arbitrarily.

4: Consider v as now visited and remove v from the set of unvisited vertices.
5: Repeat 3 until all vertices are visited.

Output: A Hamiltonian cycle or tour H of locally minimum weight in G.

Heuristic Solutions 365

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.19
Weighted future world graph with start at R and 1st insertion in Example
25.3.4.

We illustrate the Closest Insertion Algorithm with a return to the Future
World example.

Example 25.3.4. Consider finding a minimum weight tour for the visitor to
Future World whose visit starts from the Resort (see Example 25.3.1).

Start and Iteration 1

We begin at R and currently have a tour empty of edges. The choices for
insertions to the tour are considered in the following table:

Unvisited Vertex v Resulting Tour Increase = 2 ∗ dR,v Include?
M ⟨R,M,R⟩ 4 Yes
P ⟨R,P,R⟩ 26 No
O ⟨R,O,R⟩ 24 No
W ⟨R,W,R⟩ 16 No
F ⟨R,F,R⟩ 10 No

As M is the vertex which is cheapest to insert into the existing tour H = R,

we insert M into the tour, resulting in an updated H = R
2−→M

2−→ R. Figure
25.19 illustrates the start from the resort R using the Closest Insertion Algo-
rithm 25.3.3.

366 The Traveling Salesperson Problem

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.20
Future world cheapest insertion iteration 2 in Example 25.3.4.

Iteration 2

The unvisited vertices are now P , O, W , and F and note that we now have two
choices where to inserted the new unvisited vertex (yes, they end up being the
same tour but in a different direction this time, but for every other iteration
this will matter). Possible insertions are:

Unvisited Resulting Tour Increase = di,v + dv,j − di,j Include?
Vertex v

P ⟨R,P,M,R⟩ dR,P + dP,M − dR,M = 13 + 6− 2 = 17 No
P ⟨R,M,P,R⟩ dM,P + dP,R − dR,M = 6 + 13− 2 = 17 No
O ⟨R,O,M,R⟩ dR,O + dO,M − dR,M = 12 + 3− 2 = 13 Yes
O ⟨R,M,O,R⟩ dM,O + dO,R − dR,M = 3 + 12− 2 = 13 Yes
W ⟨R,W,M,R⟩ dR,W + dW,M − dR,M = 8 + 8− 2 = 14 No
W ⟨R,M,W,R⟩ dM,W + dW,R − dR,M = 8 + 8− 2 = 14 No
F ⟨R,F,M,R⟩ dR,F + dF,M − dR,M = 5 + 11− 2 = 14 No
F ⟨R,M,F,R⟩ dM,F + dF,R − dR,M = 11 + 5− 2 = 14 No

The cheapest insertion (settling the tie arbitrarily) will come by visiting
previously unvisited vertex O first then proceeding to M . Thus, at the end of

this iteration, we have the updated tour H = R
2−→ M

3−→ O
12−→ R. Figure

25.20 illustrates this second iteration.

Heuristic Solutions 367

Iteration 3

The unvisited vertices are now P , W , and F and note that we now have
three choices where to inserted the new unvisited vertex into the current tour
H = R→M → O → R. Possible insertions are:

Unvisited Resulting Tour Increase = di,v + dv,j − di,j Include?
Vertex v

P ⟨R,P,M,O,R⟩ dR,P + dP,M − dR,M = 13 + 6− 2 = 17 No
P ⟨R,M,P,O,R⟩ dM,P + dP,O − dM,O = 6 + 9− 3 = 12 No
P ⟨R,M,O, P,R⟩ dO,P + dP,R − dO,R = 9 + 13− 12 = 10 No
W ⟨R,W,M,O,R⟩ dR,W + dW,M − dR,M = 8 + 8− 2 = 14 No
W ⟨R,M,W,O,R⟩ dM,W + dW,O − dM,O = 8 + 5− 3 = 10 No
W ⟨R,M,O,W,R⟩ dO,W + dW,R − dO,R = 5 + 8− 12 = 1 Yes
F ⟨R,F,M,O,R⟩ dR,F + dF,M − dR,M = 5 + 11− 2 = 14 No
F ⟨R,M,F,O,R⟩ dM,F + dF,O − dM,O = 11 + 10− 3 = 18 No
F ⟨R,M,O, F,R⟩ dO,F + dF,R − dO,R = 10 + 5− 12 = 3 No

The cheapest insertion is obtained by visiting previously unvisited vertex
W first then out of O then proceeding home to R. Thus, at the end of this

iteration, we have the updated tour H = R
2−→ M

3−→ O
5−→ W

8−→ R. Figure
25.21 illustrates this second iteration (previously included edge OR appears as
a dashed edge).

Iteration 4

The unvisited vertices are now P and F and note that we now have four
choices where to inserted the new unvisited vertex into the current tour H =
R→M → O →W → R. Possible insertions are:

Unvisited Resulting Tour Increase = di,v + dv,j − di,j Include?
Vertex v

P ⟨R,P,M,O,W,R⟩ dR,P + dP,M − dR,M = 13 + 6− 2 = 17 No
P ⟨R,M,P,O,W,R⟩ dM,P + dP,O − dM,O = 6 + 9− 3 = 12 No
P ⟨R,M,O, P,W,R⟩ dO,P + dP,W − dO,W = 9 + 13− 5 = 17 No
P ⟨R,M,O,W,P,R⟩ dW,P + dP,R − dW,R = 13 + 13− 8 = 18 No
F ⟨R,F,M,O,W,R⟩ dR,F + dF,M − dR,M = 5 + 11− 2 = 14 No
F ⟨R,M,F,O,W,R⟩ dM,F + dF,O − dM,O = 11 + 10− 3 = 18 No
F ⟨R,M,O, F,W,R⟩ dO,F + dF,W − dO,W = 10 + 4− 5 = 9 No
F ⟨R,M,O,W,F,R⟩ dW,F + dF,R − dW,R = 4 + 5− 8 = 1 Yes

Hence the cheapest insertion is obtained by visiting previously unvisited
vertex F out of W then proceeding to R. At the end of this iteration, we have

the updated tour H = R
2−→M

3−→ O
5−→W

4−→ F
5−→ R. Figure 25.22 illustrates

this second iteration (previously included edge WR appears as a dashed edge).

368 The Traveling Salesperson Problem

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.21
Future world cheapest insertion iteration 3 in Example 25.3.4.

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.22
Future world cheapest insertion iteration 4 in Example 25.3.4.

Heuristic Solutions 369

W

O

M

P

R

F

10

4

5

15

13

9
5

11

8

8

312

2

6

13

FIGURE 25.23
Future world cheapest insertion final tour in Example 25.3.4.

Iteration 5

One unvisited vertex remains and we must determine how to least expensively
insert vertex P into H = R→M → O →W → F → R.

Unvisited Resulting Tour Increase = di,v + dv,j − di,j Include?
Vertex v

P ⟨R,P,M,O,W,F,R⟩ dR,P + dP,M − dR,M = 13 + 6− 2 = 17 No
P ⟨R,M,P,O,W,F,R⟩ dM,P + dP,O − dM,O = 6 + 9− 3 = 12 Yes
P ⟨R,M,O, P,W,F,R⟩ dO,P + dP,W − dO,W = 9 + 13− 5 = 17 No
P ⟨R,M,O,W,P, F,R⟩ dW,P + dP,F − dW,F = 13 + 15− 4 = 24 No
P ⟨R,M,O,W,F, P,R⟩ dF,P + dP,R − dF,R = 15 + 13− 5 = 23 No

As there are no remaining unvisited vertices, we are finished and the algo-

rithm has produced the tour H = R
2−→M

6−→ P
9−→ O

5−→ W
4−→ F

5−→ R (which
happens to be the same tour we obtain using the Closest Insertion Algorithm
for this example). Figure 25.23 illustrates the tour resulting from this final
iteration (previously included edge MO appears as a dashed edge).

25.3.3 The Geometric Heuristic

Recall that, by definition, a (simple) graph has vertices and either an edge
between distinct pairs of vertices or not. How the vertices are placed and the
edges are drawn are immaterial. There are a few exceptions to this, and the

370 The Traveling Salesperson Problem

current heuristic is one of them. Suppose the cities a salesperson is to visit are
laid out as represented in the following graph; that is, their physical relative
positions (in a 2-dimensional representation) are as the vertices appear in the
following graph G.

Vertices of G = V (G) Convex Hull of V (G)

Suppose further that a direct route exists between every city; that is, that
G is a complete graph (the edges have not been included in the figure).

The first step of the Geometric Heuristic is to form the convex hull (see
part 4 of Definition 16.2.1) of the vertices representing the cities. A nice way
to think of the convex hull of a collection of points to consider stretching a
rubber band that is large enough to enclose all the points but not so large it
loses its tension. Once all the points are in the interior of the rubber band,
release it and let it tighten around the points. The convex hull of V (G) is
shown in the previous figure.

The next step will be to include the “free vertices” not yet part of the
tour.

25.4 For Further Study

Bill Cook’s book In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation [10] is an absolutely wonderful account of the problem
including its history, applications, and some of the involved mathematics and
computer science. It is not too technical and can be read by those outside
these disciplines.

Reading both Wikipedia’s [64] entry and Section 8.4 of [30] will provide
the reader with good visuals a solid understanding of planar representations
of the Platonic Solids.

Section 10.1 of [9] has a wonderful exposition of planar graphs and includes
proofs of Euler’s famous polyhedral equation V − E + F = 2 as well as why
there are only five regular polyhedra.

Exercises 371

25.5 Exercises

Exercise 25.1. State all the Platonic solids and draw their planar represen-
tations. Show that each of the resulting planar graphs is Hamiltonian.

Exercise 25.2. Find tours for Example 25.3.2 via the Nearest Neighbor Al-
gorithm starting at

i. vertex B

ii. vertex C

iii. vertex D

Exercise 25.3. Find tours for Example 25.3.1 via the Nearest Neighbor Al-
gorithm starting at

i. Western World

ii. Medieval World

iii. Roman World

iv. Spa World

v. Future World

Exercise 25.4. Find tours for Example 25.3.3 via the Closest Insertion Al-
gorithm starting at

i. Western World

ii. Medieval World

iii. Roman World

iv. Spa World

v. Future World

Exercise 25.5. Find tours for Example 25.3.4 via the Cheapest Insertion
Algorithm starting at

i. Western World

ii. Medieval World

iii. Roman World

iv. Spa World

v. Future World

Exercise 25.6. How many total tours are considered when applying the
Cheapest Insertion Algorithm on a complete graph on n vertices Kn?

Exercise 25.7. For the graph in Figure 25.24,

i. use the Nearest Neighbor heuristic six times to find an optimal tour by
starting at each vertex,

372 The Traveling Salesperson Problem

A

B

C

D

E

F

17

18

19

78

12

11
10

9

4

3

2

FIGURE 25.24
Weighted octahedral graph in Exercise 25.7.

ii. use the Closest Insertion heuristic six times to find an optimal tour by
starting at each vertex,

iii. use the Cheapest Insertion heuristic six times to find an optimal tour by
starting at each vertex,

iv. and comment on any observations or difficulties that with the algorithms.

Part VI

Optimization for Data
Analytics and Machine

Learning

http://taylorandfrancis.com

26

Probability

26.1 Introduction

Probability is a common thread linking mathematics and statistics. A mastery
of probability will grant someone a strategic command of many competitive
games – including a deep, seething hatred of slot machines – as well as the
means to analyse what is most likely to happen in more general situations.
Some of the tools needed understand the examples and concepts in this chapter
are covered elsewhere in this book. Specifically, Chapter 20 introduces the tools
of basic counting and Chapter 9 reviews essential parts of calculus. Chapter
20 is especially helpful for understanding the important counting notions of
combinations and permutations.

Since this is an introductory chapter to probability, we will avoid topics
like convolutions, joint and conditional distributions,moment-generating func-
tions, and many major concepts that are used in a deeper-level study of the
subject. There are entire textbooks written on probability while the purpose
of this chapter is to build a solid foundation of understanding so that when
someone says “We expect [thing x] to happen” or “There is an X% chance of
[thing y] happening”, the reader will be equipped to know how those conclu-
sions were reached. The reader will also be able to apply optimization methods
learned in other chapters to the ideas presented in this chapter.

We will discuss probabilities in terms of their corresponding sample space,
which is a special name for all possible outcomes (i.e. results) of an experiment.
A simple example of an experiment is flipping a coin, which has the outcomes
“heads” and “tails”.

We can determine the frequency with which certain outcomes occur by
performing an experiment multiple times. If we perform an experiment N
times and some outcome of interest occurs X times, we can use the fraction
X/N = p to determine the frequency with which that outcome occurs. Often
times, this relative frequency p can be used to represent the probability of an
outcome occurring.

We will work within a probability space, (S,Z, P), which has sample space
S, the σ-algebra Z created by that sample space, and a probability function
P that takes as its input the outcome of an experiment and outputs the
probability of that outcome.

DOI: 10.1201/9780367425517-26 375

https://doi.org/10.1201/9780367425517-26

376 Probability

But we are getting ahead of ourselves. It is first necessary to discuss sets
and the basic concepts of probability that are defined in terms of them.

26.2 Set Theory

26.2.1 The Vocabulary of Sets and Sample Spaces

Mathematically, a set S is a collection of objects. The objects in S are elements
of the set S and s being an element of S is denoted s ∈ S, which can be
alternately be stated as “s is contained in S”. There is no repetition of elements
in a set, so {1, 1, 2, 3} is the same set as {1, 2, 3}. In probability, the set S of
all possible outcomes of an experiment is the sample space of the experiment.
We illustrate this with a very simple experiment: flipping a coin once.

Example 26.2.1. As the flip of a coin has two outcomes – heads or tails –
we define the sample space of the experiment of a single flip of the coin flip,
S, as

S = {H,T}.

An event is any collection of outcomes of the experiment – that is, any
subset of the sample space S (including S itself). Thus, an event can contain
none, some, or all elements of a sample space. Mathematically, we say that
some event A occurs if the outcome of our experiment is in A. This interpre-
tation of events as subsets of the sample space will be useful in the coming
sections.

Example 26.2.2. You wake up and forget what day of the week it is. To
uncover this mystery, you conduct an experiment by looking at your phone.
We define the sample space as

S = {x | x = M,T,W,R, F, Sat, Sun}

and our desired event E is defined as the day being a weekend; that is

E = {x | x = Sat, Sun}.

The outcome of our experiment reveals it is, in fact, Sunday. Sunday is an
element in the subset E, and thus we can say that the event E, that today is
a weekend, has occurred.

Sets give us a very useful way for us to describe, and later quantify, the
outcomes of experiments.

Set Theory 377

26.2.2 The Algebra of Sets

To introduce how sets operate on each other, we first define some basic rela-
tionships.

Definition 26.2.3 (Set Containment, Subset). A is contained in B if every
element in A is also in B which is written as

A ⊆ B

We also refer to A as a subset of B when it is entirely contained within
B.

Definition 26.2.4 (Set Equality). Sets A and B are equal if and only if they
have the same elements. That is

A = B ⇐⇒ A ⊆ B and B ⊆ A.

Definition 26.2.5 (Empty Set). If A = {}, that is, if A is a set with no
elements, then A is referred to as the empty set or null set. The symbol for
the empty set is ∅; that is, {} = ∅.

In the context of Probability, ∅ can be understood as an impossible out-
come for an experiment. Note also that the empty set vacuously satisfies the
definition of containment for any set; that is for any set S (including ∅) it is
always true that ∅ ⊆ S.

Example 26.2.6. Consider the sets S1 = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and
S2 = {(x, y) | 0 ≤ x = y ≤ 1}. That is, S1 represents all points in a square and
S2 represents all points on the diagonal of that square. In this case, S2 ⊂ S1.
Also, the set of outcomes where x+ y > 2 is empty.

As this section is on the algebra of sets, we should consider operations
that can be done to sets. There are three primary set operations: unions,
intersections, and complements.

Definition 26.2.7 (Union of Sets). Given two sets A and B the union of two
sets is

A ∪B := {x | x ∈ A or x ∈ B}.

That is, the union of two sets A and B is a new set formed by putting
together (without repetition) all the elements from the two individual sets. In
particular, an element is in A ∪B if and only if it is in A or it is in B.

Definition 26.2.8 (Intersection of Sets). Given two sets A and B the inter-
section of two sets is

A ∩B := {x | x ∈ A and x ∈ B}.

378 Probability

That is, the intersection of two sets A and B is a new set formed by
collecting (without repetition) all the elements that are common to both of
the two individual sets. In particular, an element is in A ∩B if and only if it
is in A and also in B.

Example 26.2.9. Suppose A = {1, 3, 5, 7, 9} and B = {2, 3, 5, 7}. Then A ∪
B = {1, 2, 3, 5, 7, 9} and A ∩B = {3, 5, 7}.

We can succinctly write the union or intersection of an arbitrary number
of sets in a fashion familiar to calculus students:

A1 ∪A2 ∪ ... ∪An =
n⋃

i=1

Ai and

A1 ∩A2 ∩ ... ∩An =

n⋂
i=1

Ai.

Definition 26.2.10 (Complement of a Set). Suppose S is a set in some
universe of discourse U . Then the complement of S is the collection of all
objects in the universe U that are not in S. That is,

Sc = S̄ = {s ∈ U | s /∈ S}.

Example 26.2.11. Let P be the collection of primes and regard the universe
of discourse to be Z+, the set of positive integers. Then Pc = P̄ is the collection
of positive composite numbers.

Unsurprisingly, for any set S in any universe U , (Sc)c = S. We also have
that U c = ∅ and ∅c = U .

Example 26.2.12. Consider a deck of cards as S. We could define the set of
all red cards in terms of their suits as Red = Hearts ∪Diamonds. We could
state the set of all black cards in terms of its complement as Black = RedC .
Notice that we have Black ∩Red = ∅.

This last example gives us the opportunity to introduce an important
term when working with sets. Sets that have nothing in common are said to
be disjoint. That is

Definition 26.2.13 (Disjoint Sets). Sets A and B are disjoint if A∩B = ∅.

These disjoint sets can be thought of as events. Examples of disjoint events
are easy to think of: e.g. “Today is a weekday” and “Today is Saturday” are
two disjoint events. Disjoint events are also said to be mutually exclusive.

These operations can be combined to give us some useful laws in the alge-
bra of sets. Each of these laws can be proven and can be found in [48].

Proposition 26.2.14. For any three sets A,B, and C we have

A ∪B = B ∪A, A ∩B = B ∩A (Commutativity Laws)

Foundations of Probability 379

A∪ (B∪C) = (A∪B)∪C, A∩ (B∩C) = (A∩B)∩C (Associativity Laws)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C)

= (A ∪B) ∩ (A ∪ C) (Distributivity Laws)

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc (DeMorgan’s Laws)

26.3 Foundations of Probability

Now that we’ve defined sets and how they operate on each other, we can define
a probability function in terms of sets. We’ll introduce a special kind of set
that contains all possible combinations of outcomes for our experiments across
multiple trials, then use that set to define a probability function.

26.3.1 Borel Sets

As a reminder, the overall goal we have is to obtain the relative frequency
with which an event or combination of events occurs given a Sample Space
S. In the latter case, we need to define a special set for each combination of
events. This special set is called a Borel field (also a σ-field) on subsets of S.

Definition 26.3.1 (Borel Field). A set B is a Borel field, or a σ-field, on a
set S if B meets the following three conditions:

1. ∅ ∈ B;
2. if S ∈ B, then Sc ∈ B; and
3. if a sequence of sets A1, A2, . . . , An ∈ B, then

⋃n
i=1 Ai ∈ B.

The first condition is just that B is not empty. The second condition re-
quires that B is closed under countable intersections while the third condition
is that B is closed under countable unions.

Example 26.3.2. Recall that the sample space for flipping a coin is S =
{x | x = H,T}. This sample space is the same whether we do one flip of the
coin or two or 100 flips. The sample space for the case of two flips would be
{x | x = (H,H), (H,T), (T,H), (T, T)} which is a σ-field.

If the reader is familiar with power sets, this definition should look familiar
– the power set of an experiment’s sample space is always a σ-field.

26.3.2 The Axioms and Basic Properties of Probability

Now that we have a sample space S and a collection of all possible outcomes B,
we can define the notion of a probability function, P . There are some common
sense assumptions that are made about all probability functions.

380 Probability

Definition 26.3.3 (The Axioms of Probability/Definition of a Probability
Function). For a sample space S and a σ-field B on S with elements A, we
can define a probability function P : S → [0, 1] as a real-valued function on B
where the following three axioms always hold:

Axiom 1: P (A) ≥ 0 for all A in B,
Axiom 2: P (S) = 1, and
Axiom 3: if A1, A2, . . . , An is a sequence of sets in B and Ai ∩ Aj = ∅ for
all 1 ≤ i, j ≤ n, then P (

⋃n
i=1 Ai) =

∑n
i=1(P (Ai)).

These axioms make intuitive sense – Axiom 1 states that there cannot be
a negative probability. Axiom 2 implies that nothing outside of the sample
space can happen (i.e. P (∅) = 0) and, thusly, that the Sample Space is an
exhaustive list of all possible outcomes. Axiom 3 says that the probability
of the union of many disjoint events is equal to the sum of the individual
probabilities of each disjoint event. Axiom 3 is listed for a finite amount of
events, but it also applies to a theoretically infinite series of disjoint events as
well.

The probability function tells us about the relative frequency of events
in Z, where the relativity comes from the standardization of the function’s
output to the reals between 0 and 1. This idea of relative frequency will come
up again in a couple sections when we discuss probability distributions.

There are some important consequences of the axioms that make up our
next theorem.

Theorem 26.3.4 (Properties of a Probability Function). Let A and B be
events in S, B a Borel field on S, and P : B → [0, 1] be a probability function.

i. P (∅) = 0,

ii. P (Ac) = 1− P (A),

iii. if A ⊂ B, then P (A) ≤ P (B),

iv. 0 ≤ P (A) ≤ 1, and

v. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. It may seem silly that part i of Theorem 26.3.4 is necessary, but we
need to it say that the probability of two disjoint events occurring is zero as
in P (A ∩ Ac) = P (∅) and intuitively the probability of an impossible event
occuring should be zero. The result follows from part ii (proven next) with
the fact that ∅ = Sc.

Part ii follows from Axiom 2 of Probability (Theorem 26.3.3) and the
relation that S = A ∪ Ac. Thus, by Axiom 3, P (S) = P (A) + P (Ac) and we
have 1 = P (A) + P (Ac). The desired result then follows.

Part iii follows from Axioms 1 and 3 of Probability. If A ⊂ B, then B =
A∪ (Ac∩B) thus by Axiom 3, P (B) = P (A)+P (Ac∩B). But Axiom 1 gives
that P (Ac ∩B) ≥ 0, giving the desired result.

Foundations of Probability 381

Part iv follows from Axioms 1 and 2 and part iii of this theorem.
The last part is less obvious, but equally true. It follows from Axiom 3 in

that we can rewrite P (B) as the sum of two intersections involving A which
then gives:

P (B) = P (Ac ∩B) + P (A ∩B) (26.1)

Similarly, since A ∪ (Ac ∩B) = (A ∪AC) ∩ (A ∪B) = S ∩ (A ∪B) = A ∪B,

P (A ∪B) = P (A) + P (Ac ∩B) (26.2)

We can solve 26.1 for the common term in both equation, which gives

P (Ac ∩B) = P (B)− P (A ∩B). (26.3)

Substituting this into 26.2 establishes the desired result.

Following the logic of last part of the previous theorem, we can even ex-
tend Axiom 3 to see that if we consider a sequence of increasing events,
A1, . . . , An (where we define “increasing” to mean that Ai ⊂ Ai+1 for all
i = 1, ..., n − 1) the probability of all events occurring is bounded by the
sum of the probability of any these events occurring. If the Ai are decreasing,
(Ai+1 ⊂ Ai, i = 1, ..., n − 1), the probability is bounded by the probability
of all these events occurring. These ideas are formally stated in the following
theorem.

Theorem 26.3.5 (The Continuity Theorem of Probability). 1. If A1, A2, . . .
is an increasing sequence of infinitely many events (Ai ⊂ Ai+1), then

lim
n→∞

P (An) = P
(
lim
n→∞

An

)
= P

(∞⋃
n=1

An

)
.

2. If A1, A2, . . . is a decreasing sequence of infinitely many events (Ai+1 ⊂ Ai),
then

lim
n→∞

P (An) = P
(
lim
n→∞

An

)
= P

(∞⋂
n=1

An

)
.

The proof of this is a bit topological and is most important for extending
the idea of a limit to probability functions. The key insight here is the summary
statement that as a space increases through unions (is an increasing sequence
of events), the probability of an event in that space is bounded by the union
of all possible components of that space. Conversely, as a space decreases
through intersections (a decreasing sequence of events) the probability of an
event in that space is bounded by the intersection of all components in that
space.

There is one more important matter fundamental to any study of proba-
bility. We could also think of subtracting the P (A∩B) in v in Theorem 26.3.4

382 Probability

as removing the instances in which we have double-counted the probability of
the event A∩B occurring; that is, the probabilities of the results common to
both A and B have been counted twice in P (A) + P (B) and therefore must
be subtracted once. This is the Probability version of the Inclusion-Exclusion
Principle in Combinatorics (Theorem 20.2.5) for two sets.

There is a natural extension of this to determining the probability of three
events A, B, and C occurring:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− [P (A ∩B) + P (A ∩ C) + P (B ∩ C)]

+ P (A ∩B ∩ C).

This time we have removed the probability of occurrences common to all
of A, B, and C twice and must make up for that by adding this probability
back to the total.

This idea can be generalized to an arbitrary (finite) number of events,
resulting in the probability version of Inclusion-Exclusion Principle in Com-
binatorics (20.2.7):

Theorem 26.3.6 (Inclusion-Exclusion Principle for Probability).

P (

n⋃
i=1

Ai) =

n∑
i=1

P (Ai) −
∑

1≤i<j≤n

P (Ai ∩Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak) − · · ·+ (−1)n−1P (A1 ∩ · · · ∩An).

In this formula, we remove the instances in which we have over-counted
by subtracting all combinations of the intersections with an even number of
events and add in all events in which we have over-removed the intersections
with an odd number of events.

26.4 Conditional Probability

Now that we have defined a probability function, we can quantify probabilities.
First, there is an important qualitative matter to consider – whether or not
all outcomes of an experiment are equally likely.

26.4.1 Naive Probability

Naive probability is used to categorize probability where it is either the case
that outcomes are equally likely or that this case is assumed. In this scenario,
computing the probability of an event E given a sample space S is as simple
as counting the number of objects in the set E (which is necessarily a subset
of S) and dividing it by the number of objects in S. That is,

Conditional Probability 383

Definition 26.4.1 (Naive Calculation of Probability).

P (E) :=
|E|
|S|

where |A| is the number of elements in the set A; that is, the cardinality of
the set A.

Example 26.4.2. A race has 42 runners R1, . . . , R42 and will award its top
prize to whomever finishes first. The sample space of potential outcomes of
this experiment (i.e. a winner of the race) is S = {x | x = R1, . . . , R42}. Since
no further information is known, we will naively assume each runner has as
good of a chance as winning the race as each of the rest of the entrants. Let
i be a fixed integer such that 1 ≤ i ≤ 42 and put E = {Ri}. Thus for each i,

the probability of runner Ri winning the race is P (E) = |E|
|S| =

1
42 .

Of course, the assumption of equally likely outcomes is often just not the
case. Sometimes the different likelihoods chances of occurring may be the
result of events depending on a condition that has already been established.

Example 26.4.3. Suppose that runner A is an Olympian in the prime of their
career, runner B works in an office but has a standing desk, and runners C
through J are identical octuplet toddlers. Surely in this situation, we would
want to re-weigh the probabilities in favor of runner A instead of assuming all
race participants are equally likely to win this particular race.

The above scenario shows why it is important to incorporate extra infor-
mation (i.e. conditions) to our probability calculations. This is the motivation
behind conditional probability.

26.4.2 Conditional Probability

We write conditional probabilities as P (B|A), which is read as “the probability
of B occurring given that A has already occurred”. This value represents the
chance that event B occurs given event A has already happened. To develop
a way to quantify this, consider the following trivial identities:

P (A|A) = 1 (26.4)

P (B|A) = P (A ∩B | A) (26.5)

We would like to represent P (B|A) in terms of non-conditional probabil-
ities. From a relative frequency point-of-view, the ratio between P (A) and
P (A ∩ B) should not change based on whether or not A has occurred – the

384 Probability

condition that A occurs should not affect the relative frequency between P (A)
and P (A ∩B). Mathematically, that means:

P (A ∩B | A)

P (A|A)
=

P (A ∩B)

P (A)
(26.6)

Substituting into this 26.4.2 and 26.4.2 gives

Theorem 26.4.4 (Calculating Conditional Probability).

P (A ∩B)

P (A)
=

P (A ∩B | A)

P (A|A)
= P (B|A).

It is worth explicitly noting that rearranging this result gives the important
result

Theorem 26.4.5 (Multiplication Rule of Probability).

P (A ∩B) = P (B|A)P (A).

Example 26.4.6. The 20 runners participating in a certain race have the
following characteristics: 10 of the runners have red shirts while the other 10
runners have green shirts, 8 of the 10 runners in red shirts have brown hair,
while 4 of the 10 runners in green shirts have brown hair. We know that the
winner of the race is a runner that has brown hair.

The chance that someone with a red shirt won is

P (red | brown) = P (red ∩ brown)

P (brown)
=

8/20

12/20
=

8

12
=

2

3
.

The chance that someone with a green shirt won is

P (red | brown) = P (green ∩ brown)

P (brown)
=

4/20

12/20
=

4

12
=

1

3
.

26.4.3 Bayes’ Theorem

Conditional probabilities end up being quite useful and can be used to more
accurately analyze the likelihood of something happening. For example, what
is the probability that drivers on a certain road have an accident while driving
that particular road could be useful information regarding a public safety
concern, but knowing the probability that a driver on this road has an accident
given that they were driving in the range of 50− 59 miles per hour will most
likely help us develop a useful policy. Often in doing such analysis, we are
interested in switching the order of the conditioning; that is, we may know
P (B|A) but be interested in P (A|B). The means of reversing a condition
is know as Bayes’ Theorem and establishing it requires the following useful
result in probability.

Conditional Probability 385

Suppose we have a sample space S, and event A, and a collection of
nonempty events B1, B2, .., Bn that partition S; that is S = B1 ∪ · · · ∪ Bn

with Bi ∩Bj = ∅ whenever i ̸= j (since the Bi satisfy these three conditions,
we say they partition S). Then

A = A ∩ S = A ∩

(
n⋃

i=1

Bi

)
(26.7)

=

n⋃
i=1

(A ∩Bi) (by the distributive law) (26.8)

and since the Bi are disjoint, by Axiom 3 of the Axioms of Probability, we
have

P (A) =

n∑
i=1

P (A ∩Bi) .

Thus by the Multiplication Rule of Probability, we have

Theorem 26.4.7 (The Law of Total Probability). For a sample space S with
an event A from S and a collection of events Bi that partition S,

P (A) =

n∑
i=1

P (A | Bi)P (Bi).

This should make sense – it is somewhat similar to saying that P (A) =
P (A|S). The events Bi, i = 1, ..., n, encompass all of S by assumption, so the
probability of any event A is the sum of all its conditional probabilities over
the partition of its sample space.

Now that we are equipped with the Law of Total Probability, we can es-
tablish the very important Bayes’ Theorem. We establish the simplest version
of the theorem first.

Theorem 26.4.8 (Bayes’ Theorem for Two Events). Suppose that A and B
are nonempty events in a finite sample space S. Then

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|B̄)P (B̄)

Proof. We have that B∪B̄ = S. Thus by two applications of the Multiplication
Rule of Probability as well as using the Law of Total Probability, we have

P (B|A) =
P (A ∩B)

P (A)
=

P (B ∩A)

P (A)
=

P (A|B)P (B)

P (A)

=
P (A|B)P (B)

P (A|B)P (B) + P (A|B̄)P (B̄)
.

386 Probability

Example 26.4.9. Suppose that a friend has recently attended a party and is
concerned that she may have contracted COVID. To check this, your friend
takes an at-home COVID test and tests negative all the while you suspect
the test is of dubious quality. Let C represent the event that your friend has
COVID, thus C̄ will represent the event that your friend does not have COVID.
Further, let N represent the event that any individual taking the test tests
negative. After contact tracing, you estimate that P (C̄) = 0.6 which means
that P (C) = 0.4. You also have discovered that for this particular test, a
negative result is only 80% reliable; that is, P (N |C̄) = 0.8. As we are interested
in the probability that your friend does not have COVID given her negative
test result, we seek P (C̄|N). By Bayes’ Theorem,

P (C̄|N) =
P (N |C̄)P (C̄)

P (N |C̄)P (C̄) + P (N |C)P (C)
=

(0.6)(0.8)

(0.6)(0.8) + (0.4)(0.2)

= 6/7
.
= 0.8571.

Thus, if the given assumptions are reasonable, there is a good chance your
friend does not have COVID but enough of a chance that she should be cau-
tious.

Of course, Bayes’ Theorem can be extended to situations involving many
events.

Theorem 26.4.10 (Bayes’ Theorem). Suppose that A and B1, . . . Bn are
nonempty events in a finite sample space S and that B1, . . . , Bn partition S.
Then for each fixed i = 1, . . . , n

P (Bi|A) =
P (A|Bi)P (Bi)

P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn)

=
P (A|Bi)P (Bi)∑n

j=1 P (A|Bj)P (Bj)
.

Example 26.4.11. Jackson Doyle had an amazing season his first full year
playing AAA ball for the Hurdam Bulls. Among other successes, Jackson had a
batting average of 0.304 and regularly saw only three different kinds of pitches
(these can be subdivided further, but let’s keep things simple for this example).
Of the pitches he faced, he put 344 fastballs in play with 115 being hits, an-
other 134 change ups in play with 37 hits, and 29 hits from the 118 balls he
put in play from breaking ball pitches. Jackson had the game-winning walk-
off hit in the series-clinching game five of the AAA Intercontinental League
Championship Series. What is the probability that the pitch Jackson hit was
a change up?

Solution. Since all the pitches Jackson faced were one of these three pitches
and since there is no overlap in the counts, this breakdown of pitches put
in play partitions the set of all pitches Jackson put in play. Let’s let F the
event that a fastball was put in play, C the event that a change up was put

Conditional Probability 387

in play, and B the event that a breaking ball was put in play. As well, we
will let H the event that the batter earned a hit off the ball in play. We then
have P (H|F) = 115/344, P (H|C) = 37/134, and P (H|B) = 29/118. Since
Jackson faced a total of 596 pitches that he put in play, P (F) = 344/596,
P (C) = 134/596, and P (B) = 118/596. Thus

P (C|H) =
P (H|C)P (C)

P (H|F)P (F) + P (H|C)P (C) + P (H|B)P (B)

=
(37/134)(134/596)

(115/344)(344/596) + (37/134)(134/596) + (29/118)(118/596)

=
37

181

.
= 0.2044.

■

26.4.3.1 Bayesian Spam Filters

The initial programs to detect unwanted email were built using Bayes’ The-
orem and worked in the following way. First, a probability threshold is es-
tablished as a cut-off for what email to let through and what to regard as
unwanted. Care should be made in establishing this threshold as minimizing
false positives in identifying spam should be prioritized since it is more im-
portant to let an unwanted email through than it is to quarantine a wanted
email. We will illustrate the idea in the following example:

Example 26.4.12. 2500 emails known to be spam are collected as are 2500
known to not be spam. The word “prince” is appears in 313 of the emails
known to be spam but only appears in 22 of the emails known to not be spam.
According to the data site Statista.com, the five-year average of global spam
volume 2015–2019 (we will leave out the COVID quarantine as it and the
following two years may be anomalies) is 55.85%; that is, based on empirical
data, an arbitrary email is more likely to be Spam than not Spam. We will
set the threshold at 92.5%; that is, if an incoming message is 92.5% or higher
likely to be spam, we will quarantine it.

Suppose an incoming email contains the word “prince”. Will the described
filter accept or reject this message?

Solution. We will let R be the event that an incoming message contains the
word “prince” and S be the event that an incoming message is spam. Thus we
have P (S) = 0.5585, P (R|S) = 313/2500, and P (R|S̄) = 22/2500. We seek
P (S|R) and by Bayes’ Theorem

P (S|R) =
P (R|S)P (S)

P (R|S)P (S) + P (R|S̄)P (S̄)
(26.9)

=

(
313
2500

)
(0.5585)(

313
2500

)
(0.5585) +

(
22

2500

)
(0.4415)

(26.10)

= 0.9474. (26.11)

https://Statista.com

388 Probability

Since the probability is above our set threshold, we will regard the email as a
unwanted and not permit its delviery. ■

There are two interesting things to note before we move on to new material.
The usage of “spam” has everything to do with the hilarious Monty Python
sketch where a man and woman seeking breakfast are in a small cafe full of
Vikings. Every breakfast dish (even “the Lobster Thermidor au Crevettes with
a mornay sauce served in a Provencale manner with shallots and aubergines
garnished with truffle pate, brandy and with a fried egg on top”) has Spam
and the woman does not want the canned ham. To make matters worse, the
Vikings flood the air when chants of “Spam! Spam! Spam! Spam!” whenever
she mentions that she does not want any of it. Honoring the skit, individuals
involved in the 1980s MUD community began using the term for unwanted
emails and data [17].

Of course, the first Spam filters involved more than one trigger word and
thus each email had a vector (e.g. ⟨1, 0, 0, 1, 0⟩) associated with it instead of
just a 0 or 1. Thus emails were represented by points in multidimensional space
and the trick was to find a boundary curve to separate the wanted email from
the unwanted email. The same idea is done in machine learning when training
AI to identify whether a photo is a picture of a chihuahua or a blueberry
muffin. The is the subject of support vector machines and is considered in
Chapter 29.

26.4.4 Independence

Of course, in the real world many events are interconnected and whereas other
sets of events may have outcomes that do not affect each other. This is such
an important matter that we need a term for it.

If the outcomes of events A and B have no influence on each other, then
we should expect that

P (B|A) = P (B) and P (A|B) = P (A). (26.12)

We could use this as the definition of when events are independent, but it is
too much to check. By the definition of conditional probability together with
the first part of 26.12:

P (B) = P (B|A) =
P (A ∩B)

P (A)
(26.13)

which gives P (B)P (A) = P (A∩B). A similar calculation with the second part
of 26.12 yields the same result. Thus we will use the following as a definition:

Definition 26.4.13 (Independent Events). Two events A and B are inde-
pendent if:

P (A ∩B) = P (A)P (B).

Random Variables and Distributions 389

Example 26.4.14. Consider rolling a standard fair 10-sided die. Let A be
the event that an odd number is rolled and B be the event that a prime number
is rolled. Thus A = {1, 3, 5, 7, 9}, B = {2, 3, 5, 7}, and A∩B = {3, 5, 7}. Thus
we have

P (A ∩B) =
3

10
̸= 1

5
=

(
1

2

)(
2

5

)
= P (A)P (B)

and that these two events are not independent. Since three out the possible
five odd numbers are prime, we can see the lack of independence in a more
intuitive way:

P (B|A) =
3

5
̸= 2

5
= P (B).

Example 26.4.15. Consider the same die from the previous example, but
this time we will have C be the event that a multiple of 5 is rolled and B will
be the event that a roll results in an odd number. Thus we have

P (C ∩B) =
1

10
=

(
1

5

)(
1

2

)
= P (C)P (B)

and that these two events are independent. As with the last example, we can
see independence in a more intuitive way: since only one out the possible five
odd numbers is a multiple of five:

P (C|B) =
1

5
= P (C).

Note in this example that C∩B ̸= ∅. Thus we have an example that shows
that independent events need not be mutually exclusive.

26.5 Random Variables and Distributions

26.5.1 Random Variables

We will now consider the topic that gets the prize for the worst name among
anything mathematical. A useful tool in probability is the notion of a ran-
dom variable. Random variables are used to quantify the outcomes of random
events and the values of these outcomes will vary. In this sense, we can see
why “random” and “variable” are involved. Formally, though

Definition 26.5.1 (Random Variable). A random variable is a function X
that maps every element in a sample space S to a subset real number; that is
X : S → Ω where Ω ⊂ R.

Thus, a random variable assigns a real number – usually a nonnegative
integer – to the outcomes of a an experiment. Note that random variables are
incredibly important, but they are not random and they are most certainly
not variables.

390 Probability

Example 26.5.2. Let S be the sample space for the experiment of flipping a
coin three times. Let X : S → R where X counts the number of heads of the
event s ∈ S. Thus

Event s ∈ S X(s)

(T,T,T) 0
(H,T,T), (T,H,T), (T,T,H) 1
(T,H,H), (H,T,H), (H,H,T) 2

(H,H,H) 3

Example 26.5.3. Consider the rolling of two standard six-sided dice. Define
the random variable X as the sum of the two dice; that is, X = x1+x2, where
x1 is the outcome of the first die roll and x2 is the outcome of the second die
roll. The sample space for this experiment is S = {(x1, x2) : 1 ≤ x1, x2 ≤ 6}
and the space created by the random variable X is Ω = {2, ..., 12}.

Event s ∈ S X(s)
(1,1) 2

(1,2), (2,1) 3
(1,3), (2,2), (3,1) 4

(1,4), (2,3), (3,2), (4,1) 5
(1,5), (2,4), (3,3), (4,2), (5,1) 6

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7
(2,6), (3,5), (4,4), (5,3), (6,2) 8

(3,6), (4,5), (5,4), (6,3) 9
(4,6), (5,5), (6,4) 10

(5,6), (6,5) 11
(6,6) 12

Random variables can be discrete or continuous – that is, they can take
either a finite number of values or occupy some interval on the real number
line. The previous scenarios have been examples of discrete random variables
– there are 2 possible outcomes of a coin flip and 11 possible outcomes of
summing two dice rolls.

Observe that the creation of a random variable can simplify the sets on
which we need to work. If we flipped a coin 100 times, there would be 2100

possible combinations of heads and tails in this experiment’s sample space.
But if we are only interested in the number of heads and we define a random
variable X to be the number of Heads in the 100 coin flips, we get Ω =
{0, 1, ..., 100}, which is considerably easier to analyze.

26.5.2 Probability Mass and Probability Density Functions

Given a sample space S with a Borel field B, we can define a random variable
X : S → Ω where Ω is the image of X. We will follow standard convention
and use upper case letters such as X for random variables and lower case
letters like x to denote particular values X may assume. Thus x ∈ Ω. Hence

Random Variables and Distributions 391

an expression like (X = x) will mean the collection of all events in S that
are assigned the value x by the random variable X. Thus P (X = x) is the
probability that the random variableX takes on the value x. This is illustrated
in the next example.

Example 26.5.4. Consider the experiment of rolling a pair of standard six-
sided dice as displayed in Example 26.5.3. Define the random variable X to be
the sum of the values of the dice resulting from a roll. Thus S = {(a, b)|a, b =
1, 2, 3, 4, 5, 6} and Ω = {2, 3, . . . , 12}. Thus P (X = 7) = 6

36 = 1
6 .

We can summarize the probability values of the random variable X as

Event s ∈ S X(s) = x P (X = x)

(1,1) 2 1
36

(1,2), (2,1) 3 1
18

(1,3), (2,2), (3,1) 4 1
12

(1,4), (2,3), (3,2), (4,1) 5 1
9

(1,5), (2,4), (3,3), (4,2), (5,1) 6 5
36

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7 1
6

(2,6), (3,5), (4,4), (5,3), (6,2) 8 5
36

(3,6), (4,5), (5,4), (6,3) 9 1
9

(4,6), (5,5), (6,4) 10 1
12

(5,6), (6,5) 11 1
18

(6,6) 12 1
36

This table displays the probability of each possible value of the random
variable X and is known as the probability distribution of X. When a prob-
ability distribution of a discrete random variable X can be expressed as a
function f , this f is referred to as the probability mass function of the random
variable X. If the random variable X is continuous, then the function f giving
the probability distribution of X is called a probability density function of the
random variable X.

We will explore some of the more prominent probability distributions after
the next topic.

26.5.2.1 Expectation and Variance of a Discrete Random Variable

It is reasonable to consider what is an average outcome of a discrete random
variable. This leads to the following definition.

Definition 26.5.5 (Expected Value of a Discrete Random Variable). Let S
be a sample space of an experiment with a random variable X : S → Ω where
X has the probability mass function f . Then the expected value of X is

E[X] :=
∑
x∈Ω

xf(X) =
∑
x∈Ω

xP (X = x) =
∑
x∈Ω

xP (x)

where P (x) is an accepted representation of P (X = x).

392 Probability

That is, the expected value of a random variable is a weighted average of
all its outcomes and is often referred to as the mean of the random variable.

Example 26.5.6. The expected value of the experiment of rolling a standard,
fair six-sided die as in Example 26.5.4 is

E[X] = 1

(
1

6

)
+ 2

(
1

6

)
+ 3

(
1

6

)
+ 4

(
1

6

)
+ 5

(
1

6

)
+ 6

(
1

6

)
=

7

2
.

Knowing the expected value of a random variable can be quite useful.

Example 26.5.7. Suppose a slot machine cost $1 to play and has the follow-
ing payouts with the stated probabilities:

P (x) =


0.0001, x = $100

0.0009, x = $10

0.999, x = $0

Which gives the expected winnings as

E(X) = ($100)(0.0001) + ($10)(0.0009) + ($0)(0.999) = $0.019.

The expected value of the payouts (i.e. average player’s reward) for playing
this game on this slot machine is $0.019 − $1 = −$0.981. Thus if a person
walked up to this slot machine with $10, 000 and played the game 10,000 times,
they can expected to walk away with $19 in hand.

Note that the expectation of a discrete random variable1 has the following
useful property:

Theorem 26.5.8. (Linearity of Expectation) Let S be a sample space of an
experiment with a random variable X : S → Ω where X has the probability
mass function f giving P (x) for all x ∈ S. Then for any real constants a and
b

E[aX + b] = aE[x] + b.

Proof.

E[aX + b] :=
∑
x∈Ω

(ax+ b)P (x) (26.14)

=
∑
x∈Ω

axP (x) +
∑
x∈Ω

bP (x) (26.15)

= a
∑
x∈Ω

xP (x) + b
∑
x∈Ω

P (x) (26.16)

= aE[X] + b. (26.17)

1The same is true for a continuous random variable, but the proof involves an integral
instead of a sum and is conditioned upon the existence of the integral.

Random Variables and Distributions 393

Let us now consider two experiments that both have five equally likely
outcomes. The outcomes of Experiment A are −2,−1, 0, 1, 2 where the out-
comes of Experiment B are −100,−50, 0, 50, 100. Both experiments have the
same mean, but the outcomes of Experiment B vary much more greatly from
the mean that do the outcomes of Experiment A. This leads to the following
notion.

Definition 26.5.9 (Variance of a Discrete Random Variable). Let X be a
discrete random variable with expected value E[x] = µ. Then the variance of
X is

V ar(X) := E[(X − µ)2]. (26.18)

Thus variance is a measurement of the expected difference of the values
of a random variable from its mean. The (X − µ) is squared so that positive
and negative terms do not cancel each other out. The positive square root of
the variance of a random variable is called the standard deviation, σ, of the
random variable. That is,

σ := +
√
V ar(X). (26.19)

Example 26.5.10. The probability distributions of the two experiments men-
tioned before the definition of variance of a discrete random variable are

Experiment A Experiment B

x P (X = x) x P (X = x)

−2 1
5 −100 1

5
−1 1

5 −50 1
5

0 1
5 0 1

5
1 1

5 50 1
5

2 1
5 100 1

5

E[X] = 0 E[X] = 0

Though the experiments have the same mean, notice that for Experiment A,

V ar(X) = (−2− 0)2 ·
(
1

5

)
+ (−1− 0)2 ·

(
1

5

)
+ (0− 0)2 ·

(
1

5

)
+ (1− 0)2 ·

(
1

5

)
+ (2− 0)2 ·

(
1

5

)
= 2

and for Experiment B,

V ar(X) = (−100− 0)2 ·
(
1

5

)
+ (−50− 0)2 ·

(
1

5

)
+ (0− 0)2 ·

(
1

5

)
+ (50− 0)2 ·

(
1

5

)
+ (100− 0)2 ·

(
1

5

)
= 5000.

We will close this subsection by observing some useful properties of vari-
ance.

394 Probability

By the linearity of the expectation of a discrete random variable, we have

V ar(X) := E[(X − µ)2] (26.20)

= E[X2 − 2µX + µ2] (26.21)

= E[X2]− 2µE[X] + µ2 by Theorem 26.5.8 (26.22)

= E[X2]− µ2 since E[X] = µ. (26.23)

Thus we have just shown:

Proposition 26.5.11. Let X be a discrete random variable with expected
value E[x] = µ. Then

V ar(X) = E[X2]− µ2.

We also have:

Theorem 26.5.12. Let X be a discrete random variable and c be any con-
stant. Then

i. V ar(X) ≥ 0 and

ii. V ar(cX) = c2V ar(X).

The proof of this theorem is Exercise 26.6.
In the context of Optimization, we often seek to maximize or minimize

either the expectation of our random variable or the variance. In theoreti-
cal cases, this is done via methods such as Maximum Likelihood Estimation
(which really just boils down to taking a derivative and setting it equal to
zero). With real-world data, this is most often done with methods such as
Steepest Descent.

26.5.3 Some Discrete Random Variable Probability
Distributions

26.5.3.1 The Binomial Distribution

The Binomial Distribution is characterized by an experiment with n identical
independent trials where each trial has two outcomes: either a success or a
failure. If the probability of a success is p, then the probability of a failure is
q = 1− p. Let X be the random variable that counts the number of successes
in n such trials. As there are

(
n
k

)
ways to have k successes among the n trials,

by the Multiplication Principle of counting (Theorem 20.2.1), we have

P (X = k) =

(
n

k

)
pk(1− p)n−k. (26.24)

Equation 26.24 is the probability mass function of the Binomial Distribu-
tion. Note that P (X = k) is often written as P (k). The trials of a binomial
distribution are often called Bernoulli trials.

Random Variables and Distributions 395

Example 26.5.13. You suspect a coin is unfair and devise a series of ex-
periments to test your hypothesis. For the experiments, you have decided to
flip the coin 100 times in each experiment and record the results. In the first
experiment, the coin landed on heads 68 times out of the 100 flips and it has
landed on heads 76 times the second time through. Since

P (X = 68) =

(
100

68

)
(0.5)68(1− 0.5)(100−68) .

= 0.0001128 and (26.25)

P (X = 76) =

(
100

76

)
(0.5)76(1− 0.5)(100−76) .

= 0.000006293 (26.26)

would be the respective probabilities of the results if the coin were fair, it is
highly unlikely that this coin in fair.

26.5.3.2 The Geometric Distribution

Closely related to the Binomial Distribution is the Geometric Distribution.
The Geometric Distribution is also characterized by an experiment with

identical independent trials where each trial has two outcomes: either a success
or a failure. Again, if the probability of a success is p, then the probability
of a failure is q = 1 − p. Let X be the random variable representing how
many trials occur in this situation before the experiment reaches a success.
For example, if we are again flipping a coin and regard a heads as a success
and upon flipping the coin we get TTTTH, we would have X = 5. Thus the
probability mass function of the Geometric Distribution is

P (X = k) = (1− p)k−1p (26.27)

where k is any positive integer.

Example 26.5.14. Suppose we toss a coin that is biased to heads with prob-
ability 0.6. What is the probability that the first head occurs on the fifth toss?

Solution. Since the trials of this experiment are identical and independent, by
26.27

P (5) = (0.4)4(0.6) = 0.01536.

■

26.5.3.3 The Negative Binomial Distribution

Our next distribution is very similar to the Geometric Distribution and we
will explain it by considering the following example:

Example 26.5.15. Bored one rainy day with a friend, the two of you create a
game you call “Snake Eyes”. For the rules of the game, the two of you decide
to take a single, fair, standard six-sided die and roll repeatedly until you have
accumulated two ones. The number of rolls to obtain two ones is counted and
the winner is the player who obtained snake eyes in the fewest total rolls. What
is the probability of obtaining two ones in exactly 12 rolls of the die?

396 Probability

Let k be the number of desired successes in n identical independent trials
where the successes have probability p. Thus there are n− k failures in these
n trials each with probability 1−p. Since the game ends with the last success,
there are

(
n−1
k−1

)
many ways for the first k− 1 success to occur among the first

n−1 trials. By the Multiplication Principle of counting (Theorem 20.2.1), the
probability of getting k success in the n trials is then

P (k) =

(
n− 1

k − 1

)
pk(1− p)n−k. (26.28)

We thus have the pmf for what is know as the Negative Binomial Distribution.

Solution. Thus, the answer to the question posed in the example is

P (12, 2) =

(
12− 1

2− 1

)(
1

6

)2(
5

6

)10
.
= 0.04935.

■

26.5.3.4 The Hypergeometric Distribution

What is often referred to as the Hypergeometric Distribution is merely an
exercise in using a basic counting principle.

Example 26.5.16. For a youth baseball fielding practice, 6 baseballs are ran-
domly selected from a ball bucket containing 40 baseballs. It turns out that the
bucket contains 2 balls from Major League Baseball (MLB) while the rest are
regular youth baseballs. What is the probability that at least one of the MLB
balls are used in the practice?

Solution. By the Multiplication Principle (Theorem 20.2.1), the number of
ways that exactly one of the MLB balls is in the mix is

(
2
1

)(
38
5

)
. Thus the

probability that exactly one MLB makes it to the field is

P (1 MLB) =

(
2
1

)(
38
5

)(
40
6

) .
= 0.26153.

Likewise,

P (2 MLB) =

(
2
2

)(
38
4

)(
40
6

) .
= 0.01923.

Thus, by the Addition Principle (Theorem 20.2.3) the probability that at
least one MLB ball gets used for fielding practice is 0.2808. ■

Note that each of P (1 MLB) and P (2 MLB) is an example of a hyperge-
ometric probability. Thus given N items consisting of M items of type 1 and

Exercises 397

thus N−M items of type 2, the probability mass function of a hypergeometric
probability of selecting n items and having k many of them being type 1 is

P (n, k) =

(
M
k

)(
N−M
n−k

)(
N
n

) .

As continuous random variables are not considered in this text, we will not
present any common distributions of continuous random variables and refer
interested readers to any introductory probability textbook.

26.6 Exercises

Exercise 26.1. Determine the following probabilities where the various ex-
periments involve rolling a standard, fair, six-sided die.

i) For rolling two dice, let E be the event that the sum of the rolls is even.
What is P (E)?

ii) When six dice are rolled, what is the probability that all of their numbers
are different?

iii) When four dice are rolled, what is the probability that all of their numbers
are different?

Exercise 26.2. If A ⊂ B and P (B) > 0, then what is P (A|B)?

Exercise 26.3. Use Bayes’ Theorem to find the probability that Jackson
Doyle’s game winning hit in Example 26.4.11 came off a

i) fastball.

ii) breaking ball.

Exercise 26.4. In a large high school, there are 600 juniors and 800 seniors.
60% of the juniors play a sport, while 75% of the seniors play a sport. Given
that a student picked at random does not play a sport, what is the chance they
are a senior?

Exercise 26.5. If A and B are independent events, prove that Ac and Bc are
also independent.

Exercise 26.6. Prove both parts of Theorem 26.5.12.

Exercise 26.7. Show that the expectation a binomial random variable with n
trials and p probability of success is equal to np. For the same random variable,
show that the variance is np(1− p).

Exercise 26.8. Show that E[X(X − 1)] = µ(µ − 1) + σ2, where E(X) = µ
and V ar(X) = σ2.

27

Regression Analysis via Least Squares

27.1 Introduction

One of the most important applications for optimization is statistical model-
ing, or the analysis of relationship between several variables based on obser-
vations. This has wide applicability from stock forecasting, to observations of
biological processes, to general data science and analysis. Regression analy-
sis determines the expected probability of observing a dependent variable Y
given independent variables X and model parameters (represented as a vector
β), and is the most common type of statistical modeling used. Any student
or employee who works with data should become comfortable with regression
analysis in their tool set. The goal of this chapter is to introduce students
to the formulation of regression problems, both linear and nonlinear, and
methods of least-squares, including linear, regularized, and nonlinear, which
is commonly used to solve them.

27.2 Formulation

Let X ∈ RN×M be a set of data observations or measurements, i.e. each
row Xi of the matrix is a data vector containing M points. Let Y ∈ RP be
a vector of dependent variables which are related to X by some unknown
process. It is not always clear what the relationship between Y and X is, thus
we require a statistical model to determine the most likely relationship given
some modeling assumptions. This is commonly written as E(Y |X) = f(X,β)
where E is the expectation (in probability) of observing Y given X, f is an
unknown statistical model for this expectation which takes in input X, and
also has a vector of parameters β = (β1, β2, . . . , βD) ∈ RD.

In general, it is difficult to ascertain the structure of f or the values of
the parameter vector β for real-world problems. Problems like predicting the
stock exchange given previous day’s numbers do not readily have a statistical
model explicitly given. Instead, data analysts usually estimate a candidate f
and parameter vector β which practically performs the best on a given dataset

DOI: 10.1201/9780367425517-27 398

https://doi.org/10.1201/9780367425517-27

Linear Least Squares 399

or application space. The remainder of this book will deal with the two main
types of f that are considered: linear and nonlinear models.

Linear Regression:

The linear model is the simplest case, but in practice is the most widely used
model for regression analysis. This is because the linear assumption is in the
parameter coordinate βi, not in the independent variables xi. For instance, the
expression y = β1x1 + β2x

2
1 is still linear in βi, even though the independent

variable x1 is nonlinear in the second term. Thus most data fitting problems
can be expressed as linear regression, with the independent variables xi being
any basis functionals such as polynomials or sinusoids or exponentials. A “best
fit” chooses the appropriate parameters βi to sum up these basis elements to
get a final function f(X,β) which is linear in β, but can be highly nonlinear
in X.

Let Y ∈ RP have same dimension as the number of rows in the data matrix
X, i.e. P = N , and β ∈ RM have the same dimension as the number of points
per data row. Then the linear regression problem can be formulated as follows:

Y = Xβ + ϵ (27.1)

where X(i, j) = xij , i = 1, . . . , N, j = 1, . . . ,M is a matrix of the independent
variables. Each row of the matrix (denoted Xi) is the set of independent
variables for each observed dependent variable yi. Note by the definition of
matrix multiplication that each yi =< Xi, β > is an inner product of the row
of the data matrix with the parameter vector. Finally, ϵ is a noise or distortion
vector which corrupts the linear relationship between Y and β. Note that in
applications, each yi is an observation of a process governed by the unknown
β and the known independent variables or basis functionals Xi.

27.3 Linear Least Squares

Given the linear regression model expressed by 27.1, the problem lies with
solving for the coefficients contained in β. We fit a linear model for the rela-
tionship between our independent and dependent variables:

yi = f(Xi;β) = β1xi1 + β2xi2 + . . . βMxiM . (27.2)

We want to choose β so that the distances between the regression model
and each data point is minimized. Let R be the aggregate of residual errors
defined as

R =

N∑
i=1

ri =

N∑
i=1

|yi − f(Xi;β)|2 = ||y − f(X;β)||22 . (27.3)

400 Regression Analysis via Least Squares

Minimizing R is one common way of fitting β to our data. The reader may
be curious as to why we construct R the way we do. A simple answer is that
R aggregates all the Euclidean distances between y and our model f(X;β).
Why do we have a squared norm? One answer is that it makes our calculation
easier (we get rid of a square root) with no impact on the optimal value of β.
It is also true that the square comes from a probabilistic interpretation of the
regression problem that we discuss later.

In general, we can construct R given Y and X and we want to use it to
solve for β. Based on our linear model, we can write

y = Xβ. (27.4)

Note that sometimes the first column of X can be sometimes augmented with
all 1’s which allows β1 to act as an intercept parameter for the regression.

The common approach would be to take the inverse of X and solve
for β, right? Not exactly, X is likely to be not square. We need to use
the pseudo-inverse. We detail the particulars of the pseudo-inverse in Sec-
tion 27.3.1, but for right now assume we can construct the right pseudo-inverse
X+ = (XTX)−1XT , then we can solve

β = X+y

and we are done. Easy, right? Unfortunately, our noisy data is unlikely to
follow a trend line so nicely as to hold the equality naturally, so we have to
turn to a choice of β that minimizes the error. Let us consider the residuals
R and choose β in the framework of optimization. We want β such that R is
minimized. If we had scalars instead of matrices and vectors, we would do this
by taking the equation for R, taking the derivative with respect to β, finding
the critical values, and calculating the values for β that give us the global
minimum. The thing is: we can still do that here! First, let’s rewrite R:

R = ||y −Xβ||22
= (y −Xβ)T (y −Xβ)

= yT y − yTXβ − βTXT y + βTXTXβ

= yT y − 2βTXT y + βTXTXβ.

(27.5)

Now, like we would with a scalar, let us take the derivative of R with respect
to the variable we want to optimize, β:

dR

dβ
= −2XT y + 2XTXβ. (27.6)

To arrive at the derivative, we need to use the two relationships:

• d/dβ(βTXty) = XT y

• d/dβ(βTXTXβ) = 2XTXβ.

Linear Least Squares 401

We leave it to the reader to verify these two derivatives. Now we can find the
critical points as the solution to

XTXβ = XT y (27.7)

which leads to the solution

β = (XTX)−1XT y = X+y (27.8)

(note that we discuss the invertibility of XTX in Section 27.3.1; we assume
it is invertible for now).

Of course, there is one last question: is this solution for β the global min-
imum? Our construction for R is convex with respect to β, so the answer is
yes! Therefore, we have a solution for β that gives us the guaranteed mini-
mum residual distances between all the points on aggregate. We focused on
the trend line case, but notice that this pertains to any number of independent
variables.

27.3.1 Pseudo-Inverse

In Chapter 4 we discussed matrix properties in depth. Of that, we covered if
a square matrix could be inverted and how that could be done. Now we will
provide a brief overview of what we can do when we do not have a square
matrix, like in the regression problem.

Consider some matrix B ∈ RN,M where N ≥M (this is typically the case
for regression). The right pseudo-inverse is defined as:

B+ = (BTB)−1BT . (27.9)

This construction allows us to solve the equation B+B = I much like a “nor-
mal” inverse. The left pseudo-inverse is defined similarly

B+ = BT (BBT)−1 (27.10)

and it lets us solve BB+ = I. For the purposes of this chapter, we will use the
right pseudo-inverse exclusively but the rest of this section applies in a similar
fashion (basically, instead of working with BTB, the left pseudo-inverse has
requirements on BBT).

The derivation of the pseudo-inverse is straightforward. We are trying to
solve the equation

V B = I (27.11)

for some matrix V . If B is square and full rank, this is easy: V is the inverse
B−1. What if B is not, i.e. N ≠ M? Notice that BTB is square. In fact,
BTB ∈ RM,M . Thus, let’s now try to solve

V BTB = I. (27.12)

402 Regression Analysis via Least Squares

Again, from Chapter 4, if BTB is full rank, then this is simple: we let V =
(BTB)−1 and we are done. What does this mean for B? Recall that the rank
of a matrix is preserved by the transpose operation, i.e.

rank(BT) = rank(B).

Next, we need to derive some theory regarding the rank of a product of ma-
trices.

Theorem 27.3.1. Given matrices V ∈ RM,N and BN,M , then rank(V B) ≤
min{rank(V), rank(B)}.

Proof : Recall that the rank of a matrix is equivalent to the dimension of
the space spanned by its columns. Therefore, for some v ∈ RM , we can define
u = Bv ∈ RN and, by definition, V u cannot span a space of dimension greater
than rank(V).

Similarly, the rank is equal to the dimension of the space spanned by a
matrix’s row. Since rank(V B) = rank(BTV T), we see that for u = V T v, then,
again,BTu cannot span a space greater of dimension greater than rank(BT) =
rank(B). These two inequalities give us our desired result.

Corollary 27.3.2. The rank of BTB is equal to the rank of B.

Proof Left to the reader as an exercise.
Putting our knowledge of matrix inversion and these theorems together,

we arrive to:

Theorem 27.3.3. For a matrix B ∈ N,M with N ≥ M , the right pseudo-
inverse B+ = (BTB)−1BT exists if rank(B) = M .

27.3.2 Brief Discussion of Probabilistic Interpretation

As we saw, if we use R as the least square difference between the data and
model, we arrive to β = X+y. Our argument lies with R being a convenient
choice based on the Euclidean norm. There is another way to derive this
solution for β that reveals it to be the best probabilistic choice if we make
some simple assumptions.

To start, let us rewrite our relationship between our regression and depen-
dent variable as

y = Xβ + ε (27.13)

where ε ∼ N (0, σ2I). That is, assume that we can model the residuals of our
model (the error) with white Gaussian noise. Errors are typically modeled in
this way. Adding this noise means that we are then modeling y as

y ∼ N (Xβ, σ2I). (27.14)

It is outside the scope of this book to go into further details, but note that
by solving for β in this way – i.e. fitting a normal distribution to the errors
of the data – provides the exact same solution for β. That is, β = X+y is the
maximal likelihood solution.

Regularized Linear Least Squares 403

27.4 Regularized Linear Least Squares

As noted in the section above, linear least squares commonly results in trying
to solve the following optimization problem:

β∗ = argminβ ||y −Xβ||22. (27.15)

This solution is known analytically as the least squares solution given by
the pseudo-inverse β∗ = X+y, and minimizes the residual error on average in
the data.

However, there are several instances in data analysis and optimization
where the minimizing the error on average is not the ideal solution. For in-
stance, if β is sparse or contains only a few non-zero entries, then we want
the solution to the optimization to preserve this sparsity condition. Thus, we
turn to regularization as a tool to help us solve these optimization problems.

Generally, a regularization to the linear least squares problem can be ex-
pressed as follows:

β∗ = argminβ ||y −Xβ||22 + Γ(β). (27.16)

Γ here can be any function, but common choices include: (1) Tikhonov
regularization with Γ(β) = ||β||2, (2) sparse ℓ1 regularization with Γ(β) =
||β||1, and (3) total variation regularization with Γ(β) = ||∇β||2. Note that
sometimes the regularization term is not differentiable such as the ℓ1 norm,
and thus closed form solutions for these problems do not necessarily exist.

Solving regularized least squares problems is outside the scope of this book,
so we recommend interested readers refer to the Convex Optimization book
by Boyd and Vandenberghe for more details. Typically such solutions require
numerical or iterative methods to solve the optimization efficiently.

28

Forecasting

Forecasting is one of the broadest applications of Statistics. With it, one can
predict the sales of a product, the temperature on a certain day, or a disease
recurrence rate. It can be used to guess the probability that it will rain, that a
person has an irregular heartbeat, or whether or not the global economy will
crash in the next 5 years. We can look to predict at a specific point in time,
or predict how a trend will change over time.

The data we will be looking at in this chapter are called time series – the
same data measured at various points in time. The methods discussed in the
previous chapter can be used to build regression models from time series data
(where the covariates have measures at the same time as the dependent vari-
ables – e.g. yearly a GDP forecast modeled by yearly unemployment, yearly
median home value, etc.). Forecasts can be obtained by running regressions
over the data set.

But what if we lack reliable covariates? What if we lack any covariates?
What if our worldview predetermines that everything is chaos, all correlations
are spurious, and that processes can’t be predicted using outside measures?

It is in this setting that this chapter exists: we have a dependent variable
y with no covariates.

28.1 Smoothing

Suppose you are a little child, incapable of observing anything other than the
reading of a thermostat. You would like to know what the temperature will
be today. The most natural way to do this would be to look at yesterday’s
temperature use it as your prediction for today. That is, ŷt = yt−1, where your
prediction for today is ŷt (A qucik note on notation – anything wearing a hat
is a prediction.)

Perhaps your lack of observational prowess is offset by diligent bookkeep-
ing. If you have the temperature from the last 7 days, you could also take the
average of the last 7 days as your forecast for tomorrow. More generally, you

DOI: 10.1201/9780367425517-28 404

https://doi.org/10.1201/9780367425517-28

Smoothing 405

could take the average of the last n days. This process is known as smoothing.

ŷt+1 = st =

n∑
i=1

yt

n
(28.1)

where st is the smoothed value at time t, as your estimate for tomorrow’s tem-
perature. This is obviously not rocket science (that’s the Kalman Smoother),
but it illustrates the basic idea behind smoothing – use some average of mul-
tiple past data points to predict the future. The simplest way to do that is
with the arithmetic average of the last n days.

28.1.1 Exponential Smoothing

Exponential Smoothing (also called Simple Exponential Smoothing by peo-
ple who like to show off) is similar in concept, but the past data is weighted
so that more recent data points are given a larger influence on the prediction.
Formula 28.1’s numerator changes to Σctyt, where the ct values are typically
user-defined and Σct = 1. A more common way of writing this formula is

ŷt+1 = st = αyt + (1− α)st−1 = αyt + (1− α)ŷt (28.2)

where st−1 is the smoothed value at time t − 1 (so it’s just the smoothed
value that we computed ”yesterday”). We call α a smoothing parameter. All
smoothing parameters are bounded between 0 and 1.

It’s useful to note here that the formula can be thought of as a weighted
average between our newly observed value and our past prediction, where the
weighting is done by α (where α is just a re-write the cts from the previous
formula).

The smoothing parameter can obviously be tuned for precision (model
evaluation comes in a later section), but right now, this is almost certainly a
waste of time. One of the many reasons for this is trends.

28.1.2 Trends

It is highly reasonable to suggest that things change over time. This can be
quantified as a trend. It is equally reasonable to embrace trends and incor-
porate them into our forecasts. Thus, we need a more complicated model for
more accurate forecasting.

Adding a trend into our model makes it look like this:

ŷt+n = st + nbt (28.3)

where n is the number of days and

st = αyt + (1− α)(st−1 + bt−1)

406 Forecasting

and

bt = β(st − st−1) + (1− β)bt−1

α and β are smoothing parameters, and the trend is determined by the dif-
ference in smoothed values st− st−1 along with the previous trend. Also note
that the b term is scaled by how far in the future you wish to predict.

Note that the two terms are just weighted averages. For the smoothed
term, st, the average is between our observed value at time t yt and our
predicted value at time t if we take our trend into account (st−1 + bt−1).
For the trend term, the average is between our newly observed trend value
(st−st−1) and our old trend bt−1. So this continues the idea of using weighted
averages between a newly observed value and our past prediction, but now it’s
broken up into two components.

It is helpful to think of the st term as a baseline expectation for time t,
with the adjustment for trend acting as a modifier to make the forecast more
precise.

So now we can account for trends! Note that some trends are nonlinear, and
must be reduced over time. We call this damping, and it’s done by replacing
all of the b terms with ϕb where ϕ acts as a damping parameter. As with the
smoothing parameter, the damping parameter is bounded between 0 and 1.
For clarity, we will assume that all trends are linear for the rest of this chapter.

Others may be concerned with something else: seasonality.

28.1.3 Seasonality

When variations are predictably recurrent in some regular interval of time,
we refer to these variations as seasonal. Seasonality, then, is the presence
of seasonal variations. We denote seasonality with the term at. We use m to
denote the number of seasons (i.e. intervals) in a given period of time. If you
treat each week as a different “season” and are predicting sales based on the
previous 28 days, m = 4. The term at−m will be used to denote the seasonal
adjustment from m intervals ago.

Suppose you have grown from being a little child and are now in high
school. You’ve loved, lost, and secured a job waiting tables at a local restau-
rant. Your boss doesn’t trust outside help, so they ask the waitstaff to forecast
sales for the next month. They know that you’re a star student, so they come
to you first.

As a good employee, you know that the restaurant is busiest on Friday,
Saturday, and Tuesday (due to the extremely popular Taco Tuesday promo-
tion). This is an example of seasonality – during a period of time (7 days, in
this case) the values have a predictable pattern of variability (Tuesday’s sales
are always higher than the days immediately before and after). Adjusting the
model for seasonality (and continuing to account for trends), we get

ŷt+1 = st + bt + at−m (28.4)

Stationary Data and Differencing 407

where
st = α(yt − at−m) + (1− α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)bt−1

at = γ(yt − st−1 − bt−1) + (1− γ)at−m

All we’re doing here is adding another weighted average term to the fore-
cast. The term (yt− st−1− bt−1) is just our observed value (yt) minus yester-
day’s baseline forecast st−1 and trend bt−1 adjustment The difference between
these terms represents our observed value for the amount added due to the
season. And at−m is just a previously predicted value for the seasonal compo-
nent. So again, just a weighted average term between an observed value and
a previously predicted value.

Adjusting for seasonality changes our estimate for our smoothed term st
by accounting for the value of at in some past interval. The trend term, bt
is independent of our seasonality term at. This makes intuitive sense – our
estimate for an overall trend shouldn’t be impacted by recurrent variations.

Your predictions will now take the day of week into account. If you only
used exponential smoothing, your forecasts for Wednesday and Friday would
be off (too high and too low, respectively).

At this point, the reader should probably be wondering where optimiza-
tion comes in. The smoothing discussed here is not really optimizable in a
statistical sense. The goodness-of-fit is judged by one-number summaries (dis-
cussed in a later section) meant to be optimized, but it’s done by iterative
work rather than maximizing a likelihood function.

Smoothing requires no assumptions, making it an excellent first approach
to forecasting. However, making some assumptions about the properties of the
data will allow us to extend our forecasting toolkit.

28.2 Stationary Data and Differencing

Stationary time series data has properties that don’t vary with time. This is a
key assumption of the models in the next section – that the properties of our
data are constant with respect to time. When data has this property, specif-
ically a constant mean and variance, is called stationary data. We formally
define the property of stationarity as:

Definition 28.2.1 (Stationary). A set of data with finite variance, denoted
by y, is said to be stationary if
1. ∀t, E(yt) = µ
2. ∀t, i, j, cov(yt, yt−i) = cov(yt−j , yt−i−j)

408 Forecasting

Of course the means and variances will almost never be completely con-
stant – we can perform hypothesis tests to test these assumptions and deter-
mine whether any changes over time are significant enough to violate our as-
sumptions. It is also worth noting that this definition of stationarity is referred
to as “weak” stationarity – a “strong” version of stationary requires us to con-
firm that the CDF of every possible subset of y is equivalent to every other
possible subset of y. This property is much more difficult to achieve, whereas
we have much simpler methods of achieving weak stationarity. Non-stationary
data can be transformed into weakly stationary data, most popularly through
differencing.

Differencing is as simple as subtracting the value of interest from one
period to the next. We will denote the differenced series of data as y′t, and it
is calculated as

y′t = yt − yt−1 (28.5)

We also refer to yt−1 as the first lag of yt. yt−2 would be the second lag of yt,
etc.

Differencing primarily helps stabilize the mean of the time series – that is,
it removes the trend’s effect on the mean. Consider a product that always sells
100,000 more units than it sold the previous month (i.e. a product with a trend
of increasing by 100,000 units sold). The differenced data will have a mean of
100,000 (because every data point in the differenced series is 100,000), whereas
the moving average of the un-differenced sales will vary based on which months
you look at.

To stabilize the variance, transformations can be used. Logarithms are a
popular choice for this.

Note that the stationarity of data doesn’t affect how forecastable it is. Con-
sider the product from a couple sentences ago that always sells 100,000 more
units than it did the previous month – we could use our most basic smoothing
techniques to estimate sales for the next few months with no problem, even
though it doesn’t have a constant mean over time and is thus non-stationary.

28.2.1 Autocorrelation

To determine stationarity (and thus whether or not differencing is necessary),
we look at the autocorrelation function (ACF) of the data. The value of the
ACF at time t compared to lag i is equal to

rt =
Σ(yt − ȳ)(yt−i − ȳ)

Σ(yt − ȳ)2
=

cov(yt−i, yt)

var(yt)
(28.6)

The word autocorrelation can be intimidating, but it’s really the same as
correlation. Correlation is the relative amount to which some variables e.g. x
and y vary together: autocorrelation is the relative amount to which e.g. yt
and yt−i vary together. The ”auto” part of autocorrelation just means that

ARIMA Models 409

the action is performed on itself. So then autocorrelation is just the correlation
of a set of data with a past version of itself.

We can determine the whether or not data is stationary with hypothesis
tests. One widely used way of checking is to use the ACF and the Ljung-
Box test. The test statistic, Q, is used to see if autocorrelation is significantly
different from 0 at any time, and Q ∼ χ2

m. The formula is:

Q = n(n+ 2)
h∑

i=1

(ρk)
2

n− k

Where n is the sample size, ρk is autocorrelation at lag k (which means
that it is k days away from time t, and h is the number of lags being tested.
Basically the sums of the autocorrelation (with more importance given to
smaller lag times) and a scaling factor.

There are other tests (such as the Dickey-Fuller, KPSS, and the unit root
test) but Ljung-Box is the most widely used. It has the somewhat desirable
property of a loosely defined alternative hypothesis (which means that the
test has a moderate amount of power in a large number of situations rather
than a large amount of power in a moderate number of situations), making it
a generally useful first test for stationarity.

Why is a high level of autocorrelation (also known as serial autocorrelation)
bad? Technically speaking, autocorrelation violates the assumption that all of
our data is independent and identically distributed (which is an assumption
of basically every statistical model you will ever encounter). But there is an
intuitive understanding as well – When we use optimization methods (such as
least squares estimation), we’re essentially trying to find a ”signal” to the data,
some kind of underlying structure. If everything is just a function of what came
before it (rather than the manifestation of an underlying pattern/structure),
then the signal is much harder to parse. This results in unstable estimates.

There is also a Partial Autocorrelation Function (PACF), which mea-
sure the relationship between yt and yt−k after removing the effects of
yt−1, yt−2, · · · , yt−(k−1). Both the ACF and PACF should be checked to make
sure serial autocorrelation doesn’t exist in the data. The ACF and PACF are
guaranteed to be equal at time t− 1.

28.3 ARIMA Models

If we assume our data is stationary, we can use other statistical techniques
to generate a forecast. A basic technique for this is an ARIMA model. A
formal definition for an ARIMA will follow after all the component parts are
explained.

410 Forecasting

ARIMA stands for AutoRegressive Integrated Moving Average. ARIMA
models represent a different approach to forecasting than smoothing – they
capture autocorrelation in the data rather than just trends.

ARIMA models have 3 components: the number of AutoRegressive coeffi-
cients (denoted as p), the value of differencing (d, corresponds to the ”Inte-
grated” part of the model name), and the number of terms used in the Moving
Average (q). The model is written like ARIMA(p,d,q).

It will be useful to compare these models to well-known ”classical” time
series. The two big classical time series are white noise and random walks.

Definition 28.3.1 (White Noise). A set of time series data with finite vari-
ance is said to be white noise if 1. ∀t, E(yt) = 0
2. ∀t, i, j, cov(yt, yt+i) = 0

The values can adhere to a distribution (denoted WN), but are completely
random. That is, a sequence of data Zt is denoted Zt ∼ WN(0, σZ)

2. White
noise is basically an unpredictable sequence of values – note the complete lack
of covariance among terms implied by condition 3. We generally assume that
white noise plays a part in every set of time series data.

A random walk builds on the idea of white noise by incorporating se-
rial autocorrelation. Rather than just an unpredictable sequence of values, a
random walk is a sequence where yt is heavily correlated with past values
yt−1, yt−2, · · · plus a white noise component. A random walk looks like

yt = yt−1 + Zt =
t∑

i=1

Zi (28.7)

We can also add a term for ”drift”, which is very similar to accounting for an
overall trend in the data. The formula becomes

yt = δ + yt−1 + Zt =

t∑
i=1

(δ + Zi) = tδ +

t∑
i=1

Zi (28.8)

Random walks (even without drift) are not stationary.

28.3.1 Autoregressive Models

Autoregression (AR) is simply regressing a dependent variable on past values
of itself (rather than values of independent variables). The value of a series
with a mean of zero would be:

yt = µ+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt =

p∑
i=1

ϕiyt−i + ϵt (28.9)

where ϵt is white noise. This model is called an AR(p) model (an autoregressive
model of order p) because it uses p lagged values in the model equation.

ARIMA Models 411

Recall that we assume our series is fundamentally just white noise. We can
express this mathematically as:

yt −
p∑

i=1

ϕiyt−i = µ+ ϵt (28.10)

Which is a nice way of showing that our method is just taking out the
components that aren’t white noise from the value of yt via the autoregressive
components. That is, after accounting for the autoregressive component, our
series is just white noise centered around µ.

In an AR(1) model, −1 < ϕ1 < 1. If ϕ1 = 0 in an AR(1) model, then it
implies our data is all white noise (no correlation to the past). If |ϕ1| = 1 in an
AR(1) model, then it implies our data is a random walk (perfect correlation
to the past).

You might remember that in a linear regression, a regression coefficient
b can be estimated by simply multiplying the ratio of standard deviations
between x and y along with the correlation between x and y, or b = r

sy
sx
. It’s

not quite so simple for autoregressions (though the partial autocorrelation
plays a large role in determining ϕ), and a more detailed explanation of how
these are calculated can be found in the 4th edition of Shumway and Stoffer
(cited, along with other useful resources, at the end of the chapter)

28.3.2 Moving Average Models

Moving Average (MA) models are not the same as obtaining forecasts using
smoothing. Moving average models uses past errors from another forecasting
model (rather than the past values of the dependent variable, as in an AR
model), and looks like

yt = µ+ θ1et−1 + θ2et−2 + · · ·+ θqet−q + ϵt =

q∑
i=1

θiet−i + ϵt (28.11)

where et is equal to yt − ŷt. This model is called an MA(q) model (a moving
average model of order q) because it uses q lagged errors in the model equation.

28.3.3 ARIMA Model Structure

Putting the last few sections together, we can now formally define an ARIMA
model.

Definition 28.3.2 (ARIMA). An ARIMA model of order (p,d,q) is the com-
bination of an autoregressive model of order p and a moving average model of
order q, possibly on differenced data. The model is written as

yt = µ+

p∑
i=1

ϕiyt−i +

q∑
i=1

θiet−i + ϵt (28.12)

412 Forecasting

Where yt = y′t if the data is differenced. Our biggest concern when fitting
ARIMA models is optimizing the value of p,d,and q. Luckily, they’re integers!
So it’s just a matter of brute force and checking some goodness-of-fit statistics!
Thus again, we’re optimizating using iterative methods.

We’ll consider the special (and frequently used) case where d=1.
We can connect these notions of ARIMA models to our smoothers from

earlier. Check this out – We can rewrite our simple exponential smoothing
formula to be

ŷt+1 = αyt + (1− α)ŷt = ŷt + α(yt − ŷt) = ŷt + αet

which can be rewritten to say

ŷt = ŷt−1 + αet−1

using et−1 = yt−1 − ŷt−1, this can be rewritten as

ŷt = yt−1 − (1− α)et−1

Now, an ARIMA(0,1,1) model prediction looks like:

ŷt = yt − yt−1 = θ1et−1

which is actually just
ŷt = yt−1 + θ1et−1

So they are the same! An ARIMA(0,1,1) model gives the same value as Simple
Exponential Smoothing when θ = −(1− α)!

The connection is hard to see, and is not really useful in a practical sense.
But is worth showing the overlaps in our methods to show how ARIMA mod-
els represent a conceptual extension to our previous methods, even if they
don’t really look anything alike. It should make sense that a simple exponen-
tal smoothing model can be equivalent to a differenced MA model. The AR
component simply allows for additional information (specifically, the autocor-
relation) to be utilized as well.

28.4 Partial

The reader almost certainly would like to know whether they should use
Smoothing or ARIMA techniques. Luckily, there is no definitive answer! Both
have their uses, and the effectiveness of a model can be quantified using
goodness-of-fit metrics. However, caution and common sense should be use
when interpreting models. Smoothing has its uses outside of forecasting as

Exercises 413

well – many data imputation methods are just some form of exponential
smoothing.

28.4.1 Goodness-of-Fit Metrics

Choosing which model is not especially difficult – there are a few metrics we
use to measure the accuracy of our forecasting models. We will focus on 2:
BIC (Bayesian Information Criterion) and MSE (Mean Squared Error).

The BIC is similar to AIC (Alkaline Information Criterion), but it adjusts
for sample size. Many statistical packages include both AIC and BIC, though
BIC is the more useful metric for comparing models with different sample
sizes. AICc (basically AIC but with an adjustment to limit the number of
parameters) also exists. The formulas for all 3 are

AIC = 2k − 2ℓ

AICc = AIC +
2k2 + 2k

n− k − 1

BIC = k lnn− 2ℓ

Where ℓ is the maximized value of the log-likelihood function, k is the number
of parameters to be estimated, and n is the sample size.

Lower values indicate a better fit (note that we aim to maximize the like-
lihood function, which is multiplied by a negative number to compute BIC),
and all 3 of these statistics can be negative.

The MSE is covered elsewhere in the book, but the formula is

MSE =

n∑
i=1

(yt − ŷt)
2

n

Where n is the number of datapoints. We also want to minimize this, but it
cannot be negative.

Also note that transforming your data will change your goodness-of-fit
metrics – make sure that all models being compared are being run on the
same data!

28.5 Exercises

1. What are the benefits of including more terms in an exponential smoother?
What are the downsides?

2. Explain what would happen if you used a linear transformation to sta-
bilize the variance of a non-stationary time series. Would it solve the problem
of heteroskedasticity?

414 Forecasting

3. Explain why ACFs that go to zero quickly are more likely to be station-
ary than ACFs that go to zero asymptotically.

4. Show that the random walk with no drift is nonstationary (Hint:

V ar(Yt) = V ar(
t∑

i=1

Zi)).

5. Show that an ARIMA(0,1,0) model is a random walk.

29

Introduction to Machine Learning

29.1 Introduction

In this chapter, we provide a brief introduction to the field of machine learn-
ing, a subfield of artificial intelligence and pattern recognition. This area has
experienced a lot of growth in the past several years, with companies such as
Google, YouTube, and Facebook pioneering the use of this technology in their
products and services. Machine learning techniques are becoming ubiquitous
in modern technology.

For students in optimization, machine learning becomes a major applica-
tion area for the techniques taught in this textbook. Most machine learning
involves learning from data or examples, which typically involves data anal-
ysis in the form of model fitting and optimizing the parameters of a model
to best describe (or generate) the data. In this chapter, we briefly survey the
field of machine learning to highlight how optimization is used in the central
algorithms of the field. We encourage the reader to refer to dedicated sources
for machine learning to learn about more advanced applications.

29.2 Nearest Neighbors

One of the simplest tasks for machine learning is for a computer to determine
if an example data point is similar to another data point in a set of data
points. The key word here is similar, and can apply to many contexts. For
instance, two images of two different dogs may be similar, even though they
are two completely different dogs.

To understand this, its important to understand that data can be encoded
into features, which are represented as vectors x ∈ RN . Sometimes the signal
itself can act as its own feature vector (i.e. the audio signal in time), but most
often feature vectors are constructed from the original signal or data point.

Thus, we formulate the problem as follows: Given a new test datapoint with
feature vector x ∈ RN , what is the most similar data point x∗ in the training
set [x1, . . . , xM]? To calculate this, one can solve the following optimization

DOI: 10.1201/9780367425517-29 415

https://doi.org/10.1201/9780367425517-29

416 Introduction to Machine Learning

algorithm:
x∗ = argminxi

d(x, xi), (29.1)

where d : RN × RN → R is typically a distance function. This simple opti-
mization algorithm is typically solved via brute force search, namely checking
all pairwise distances between the new data point and all training datapoints
to find the closest match. While simple, this algorithm has seen widespread
use in systems such as recommendation systems (e.g. find the movie most like
the one the user just watched), and pattern recognition.

29.3 Support Vector Machines

One of the main tasks in machine learning is that of classification: dividing
the data into distinct categories. For instance, this could include separating
pictures into those taken during the day and those taken at night, or cate-
gorizing the breed of dog present in a given picture. Of these classification
tasks, one of the most important ones is that of binary classification. This
is particularly important for questions about the data which have yes or no
answers (e.g. is this a dog in the picture? Is this a spam email?).

Formally, we write that data xi has a corresponding label yi = ±1 where
+1 is one class, and −1 is the opposite class. The task thus becomes to find a
function f such that f(x) = y for all (x, y) pairs in the world. This would be
equivalent to the perfect binary classifier.

In this section, we introduce the idea of support vector machines as classi-
fiers that can learn from training data in order to achieve high performance in
binary classification. We note that multi-class classification is more difficult,
and requires either training separate one-against-all binary classifiers for each
class or more advanced joint optimization schemes.

Support Vector Machine: For a given dataset (xi, yi), we define a hy-
pothesis as the following function: h(xi) = sign(wTxi + b) where w ∈ RN is
a weight vector, b is a scalar bias. Thus h makes a decision on its input on
whether it belongs to ±1. Thus our problem reduces to how to assign weights
w and bias b such that our classifier evaluates correctly.

Hyperplanes:We first note a natural underlying geometry to the problem
of support vector machines. The equation wTx+b defines a hyperplane in RN .
This means that this binary classification problem is equivalent to finding a
hyperplane which “shatters” or separates the +1 and −1 classes. For a given
point a ∈ RN , we calculate the distance between a and hyperplane in the
direction of the weight vector w as 1

||w|| (w
Ta+ b).

Not only do we want to find a w, b which separate the points, but we want
a hyperplane that most separates the two classes equally. If we consider the
distance between two hyperplanes as 1/||w||, we then seek to minimize the

Neural Networks 417

following quadratic programming problem:

argminw,b

1

2
wTw s.t. yi(w

Txi + b) ≥ 1, ∀i. (29.2)

What this optimization basically returns is the weight vector w and bias b
such that it achieves no mistakes on the training data yi(w

Txi+b) ≥ 1. While
this is the most straightforward linear classifier formulation of the SVM, it
shows how optimization can be used to perform a binary classification task.

29.4 Neural Networks

Currently, the most common type of machine learning algorithm deployed are
neural networks. The networks are a nested composition of linear and nonlin-
ear functions, which transform the input data (or features) into an output that
can either be a classification vector or directly regress another set of points.
Neural networks are roughly modeled after the electrical signaling that occurs
for our brain neurons, where inputs are weighted, aggregated, and cause the
neuron to spike after a certain nonlinear threshold is reached. While this is a
highly simplistic model of neurons in our brain, assembling multiple of these
neurons has resulted in state-of-the-art in pattern recognition tasks.

Optimization is primarily used for the training of the weights/parameter
sets of neural networks. Typically, these nonlinear functions are trained using
stochastic gradient descent, where the gradient is computed over batches of
training data. More explicitly, each weight parameter wnew = wold − λ ∂L

∂w
is updated with respect to the gradient of a loss function L which typically
encodes how far the output of the neural network is with respect to the ground
truth annotated label.

29.4.1 Artificial Neural Networks

The simplest model for the neural network is typically called an artificial
neural network (ANN) or a perceptron. Given an input x ∈ RN , the perceptron
computes the following:

y = f(
N∑
i

wixi + b) (29.3)

where f is typically a non-linear function such as the Heaviside step function
or a sigmoidal function, and w is a vector of weights, and b is a bias term.
Note this is very similar to the SVM, except with the non-linearity attached.

To train this perceptron, usually the following algorithm is deployed:

Method 29.4.1 (Perceptron Training Algorithm). Initialize w = 0. Then
perform the following steps for i = 1, . . . , T or until a desired accuracy rate is
achieved:

418 Introduction to Machine Learning

1. Calculate the estimate of the perceptron: ŷt = sign(
∑N

i wt−1
i xt

i)

2. Query the ground truth value yt

3. If yt ̸= ŷt, update wt = wt−1 + λyt · xt with some weight λ.

Usually the bias term is folded into the weight term by appending an
additional coordinate of 1 to all data points. This method learns to update
the weights w to learn the correct classification on all the data points. There
have been some proofs of convergence for the perceptron algorithm, although
this is out of scope for this book, and requires strong assumptions on the
datasets (such as linear separability similar to the linear SVM case).

Further advances in neural networks have introduced multiple layers of
perceptrons, or multi-layer perceptrons (MLPs) to form artificial neural net-
works. These are usually trained using backpropagation, an update rule that
uses a loss function to calculate the gradient of the loss function with re-
spect to the weights of the multilayer perceptron. Even more advanced deep
learning techniques have introduced more types of neural networks such as
convolutional neural networks and recurrent neural networks among others.
We advise the reader to read a contemporary text on machine learning and
pattern recognition to get a full picture of the state-of-the-art in neural net-
works.

29.4.2 Exercises

Exercise 29.1. 1. Let D be the following dataset consisting of points xi =
(x1, x2) ∈ R2 with associated label yi = ±1, written in form [(x1, x2), y].
Let

D = ([(1, 1),+1], [(2,−2),−1], [(−1,−1.5),−1], [(−2,−1),−1],
[(−2, 1),+1], [(1.5,−0.5),+1]).

Perform all steps of the perceptron algorithm by hand, going through each
point in order (left to right, do not randomize the order). Show all calcu-
lations, and plot the hyperplane and all data points (with their labels) for
every iteration. Note: you will have to come up with a way to take care of
the bias term. Report the final converged solution, and plot it.

2. Now write a code to perform the perceptron algorithm given any set of data
points. Show that you can reproduce the result of the dataset given in the
step above.

3. Add the minimum number of additional points to make this particular
dataset not linearly separable. Show that your code keeps looping and
doesn’t attain convergence (it suffices to measure the change in w from
iteration to iteration, and plot this to show that it never converges to zero).

Neural Networks 419

Exercise 29.2. 1. Using the same dataset as the previous problem,

D = ([(1, 1),+1], [(2,−2),−1], [(−1,−1.5),−1], [(−2,−1),−1],
[(−2, 1),+1], [(1.5,−0.5),+1]),

let’s solve this problem using SVMs. Write a code to find a SVM which
linearly separates the above data. Plot this support vector machine and its
(hard) margin. We recommend using pre-existing packages for SVMs in a
language like Python or Matlab to solve this problem.

A

Techniques of Proof

The sciences come to what is regarded as “true” by employing the Scientific
Method. Developed in the 17th century and held as the standard since, the
Scientific Method is “a method of research in which a problem is identified,
relevant data are gathered, a hypothesis is formulated from these data, and
the hypothesis is empirically tested” [16]. This works well for the sciences,
but not for Mathematics. Rather than observing phenomena, Mathematics is
built on definitions and using logic to derive results from those definitions and
other results; i.e. the only way to acquire truth in Mathematics is to employ
logic and rules of inference1.

A.1 Introduction to Propositional Logic

We will work towards proof techniques after first establishing the principles
on which they are based. Fundamental to this is the notion of a proposition.

Definition A.1.1 (Proposition). A proposition is a declarative statement
that is either true or false.

Examples of propositions include “Today is Monday”, “3 + 4 = 8”, “Julie
is taking Optimization”, and “The moon is made of green cheese”. The state-
ments “Optimization is a great class” and “The Steelers are the greatest NFL
franchise” are not regarded as propositions as they are matters of opinion and
not true or false (though I am pretty sure reasonable people would agree with
both).

Propositions are usually denoted by lowercase letters p, q, r, etc., and it is
possible to perform operations on them. Possible operations are best defined
using a truth table where all combinations of possible truth values of the
included propositions are considered.

Definition A.1.2 (Negation of a Proposition.). Let p be a proposition. Then
the negation of p is

1We will not introduce the rules of inference here but rather assume the basics are
understood. The curious reader is encouraged to see Section 1.6 of [48] or any logic text.

DOI: 10.1201/9780367425517-A 420

https://doi.org/10.1201/9780367425517-A

Introduction to Propositional Logic 421

TABLE A.1
Truth Table for Negation of a Proposition

p ¬p
T F
F T

It is acceptable to use to alternate notation −p or p for the negation of p.
We may also combine two or more propositions, as in the conjunction and

disjunction operators. Conjunctions correspond to the word “and” as in “Take
out the garbage and do the dishes”. A conjunction is true exactly when both
propositions are true and false otherwise.

Definition A.1.3 (Conjunction of Propositions). Let p and q be propositions.
Then the conjunction of p and q is

TABLE A.2
Truth Table for Conjunction Operator on Propositions

p q p ∧ q

T T T
T F F
F T F
F F F

Likewise, a disjunction corresponds to “or” as in “Take out the garbage
or do the dishes”. A disjunction is false when both propositions are false and
true otherwise.

Definition A.1.4 (Disjunction of Propositions). Let p and q be propositions.
Then the disjunction of p and q is

TABLE A.3
Truth Table for the Disjunction Operator on Propositions

p q p ∨ q

T T T
T F T
F T T
F F F

422 Techniques of Proof

An important operator on propositions is the implication operator →
which is usually referred to as the conditional statement p → q. This can
be read “p implies q” or, more common in spoken language, “If p, then q”.
The “if” part is called the hypothesis or antecedent where the “then” part is
referred to as the conclusion or consequent . Implications are also called con-
ditional statements and do not always appear in “if-then” form. For instance,
a classic example of a conditional statement is “If it is raining, then it is wet”.
On of many other ways to say this is “It is wet whenever it rains”.

Before we state the truth table for conditional statements let us consider an
important scenario. Suppose Optimization professor has on the class’ syllabus
that the course is only offered Pass/Fail and any semester average that is 70%
or higher will be assigned a pass. If a student has a semester average that is
at least 70% and the student is awarded with passing, then the professor has
honored the conditions in the syllabus. If a student has an average that is less
than 70% and does not get a pass, then certainly the professor has not violated
the syllabus. If, on the other hand, a student has an average that is less than
70% but the professor assigns a pass, one cannot say that the professor has
violated the syllabus. The only condition where the professor would violate
this particular agreement is if a student has an average that is at least 70%
but is assigned a fail. Thus the truth table for conditional statements is

Definition A.1.5 (Conditional Statement). Let p and q be propositions. Then
the conditional statement p→ q is

TABLE A.4
Truth Table for Conditional Statements

p q p→ q

T T T
T F F
F T T
F F T

Other conditional statements are related to a given conditional statement.
The converse of p → q is the conditional statement q → p. The converse of
“If it is raining, then it is wet” is “If it is wet, then it is raining”. As well,
the inverse of p → q is the conditional statement ¬p → ¬q. The inverse of
“If it is raining, then it is wet” is “If it is not raining, then it is not wet”.
Since it can be wet without it currently raining we see that just because a
conditional statement is true does not mean its converse or inverse are true.
Lastly and important to our work in this chapter, the contrapositive of p→ q
is the conditional statement ¬q → ¬p. The contrapositive of “If it is raining,
then it is wet” is “If it is not wet, then it is not raining” which, of course,
has to be true since it gets wet every time it rains. This example is not an

Introduction to Propositional Logic 423

exception as it is the case that p→ q is logically equivalent to ¬q → ¬p as we
now prove by showing they have the same truth values.

TABLE A.5
Proof That a Conditional Statement Is Logically Equivalent to Its Contrapos-
itive

p q p→ q ¬q ¬p ¬q → ¬p
T T T F F T
T F F T F F
F T T F T T
F F T T T T

A special situation arrives when a conditional statement is joined with its
converse by a conjunction. The result is called a biconditional which is usually
read “if and only it”.

Definition A.1.6 (Biconditional).
The biconditional statement on two propositions p and q is defined to be

p ⇐⇒ q := (p→ q) ∧ (q → p).

The truth table for the biconditional is given in Table A.6:

TABLE A.6
Truth Table for the Biconditional

p q p→ q q → p (p→ q) ∧ (q → p) p ⇐⇒ q
T T T T T T
T F F T F F
F T T F F F
F F T T T T

From the table we see that a biconditional on two propositions is true
precisely when the propositions have the same truth values and false otherwise.

We conclude this section with introducing language often associated with
conditional statements. Given a conditional statement S → N , one can say
that S is sufficient for N , meaning that if S is true then it must follow that
N is true. S does not need to be true for N to be true (see row 3 of Table
A.4); hence the term sufficient. To be wet outside, it is sufficient that it is
raining; though it may also be wet for another reason. Similarly, one can say
that given S → N , that N being true is a necessary condition for S to be
true; meaning S cannot be true without N also being true. Being wet outside

424 Techniques of Proof

is a necessary condition for it raining; it cannot rain and not get wet outside,
Another example would be that if Brenna wants to roast marshmellows, then
it is necessary for Brenna to have a fire. Roasting marshmellows is only a
sufficient condition for having a fire as Brenna may have a fire for some other
reason.

A.2 Direct Proofs

As discussed at the beginning of this appendix, mathematical results do not
follow from the Scientific Method but are proven. These results go by many
names – Theorem, Lemma, Corollary, Observation, or Remark – and have
one thing in common: they are all conditional statements. In a direct proof of
p→ q an argument is made by starting with the hypothesis then using rules of
inference to build to q. This will be demonstrated in the following examples:

Observation A.2.1. If n is even, then n2 is also even.

Proof. The hypothesis of this statement is the condition that n is even. To
build a direct proof we start with the hypothesis: n even means that exists
some integer k such that n = 2k. Thus n2 = (2k)2 = 4k2 = 2(2k2). Since 2k2

is an integer, we have shown that n2 is twice an integer thus establishing that
the conclusion does follow from the hypothesis.

Of course, it is not necessary for a proof to be so wordy as we show with
the next example.

Observation A.2.2. The product of two odd numbers is an odd number.

Proof. Suppose m and n are odd; that is, m = 2s+1 and n = 2t+1 for some
integers s and t. Thenmn = (2s+1)(2t+1) = 4st+2s+2t+1 = 2(2st+s+t)+1
which is thus odd.

A.3 Indirect Proofs

Sometimes a direct proof is quite cumbersome or even impossible. In these
situations, it is very helpful to try a different, less direct, approach.

A.3.1 Proving the Contrapositive

Consider proving that of n2 is odd then n must be odd. A direct approach
would start with n2 = 2k+1 for some integer k but from here it is impossible

Indirect Proofs 425

to conclude that n is of the same form. In this situation it will be helpful
to use the result proven in Table A.5: that p → q is logically equivalent to
¬q → ¬p.

Observation A.3.1. If n2 is odd, then n is odd.

Proof. We instead prove the contrapositive, namely if n is even then n2 is
even. This was established in Observation A.2.1.

For the next example, recall that a number r is rational if there exist
integers a and b with b ≠ 0 such that r = a/b. A number that is not rational
is said to be irrational.

Lemma A.3.2. If x is irrational, then 1/x is irrational.

Proof. We instead prove the contrapositive: if 1/x is rational, then x is ra-
tional. If 1/x is rational, then there exist integers a and b, b ̸= 0, such that
1/x = a/b. As 1/x ̸= 0, we have a ̸= 0. Hence x = b/a for integers a and
b.

A.3.2 Proof by Contradiction

Sometimes both a direct proof and proving the contrapositive are incredibly
difficult or even impossible. When this happens, it will be helpful to have
another tool in the toolbox.

Recall from Table A.4 that the only time the conditional statement p→ q
is false is when p is true and q is false. A proof by contradiction establishes
a result by ruling out this possibility. In particular, a proof by contradiction
begins by assuming that the conclusion is false then establishes that under this
assumption the hypothesis cannot be true. Consider the following example:

Theorem A.3.3. Let n be a positive integer. If n = ab, then either a ≤
√
n

or b ≤
√
n.

Proof. Assume for contradiction that the conclusion is false; namely that a >√
n and b >

√
n (this is DeMorgan’s Law; see Exercise A.2). Then n = ab >√

n ·
√
n = n; a contradiction since n cannot be greater than itself.

The next example is a classic and something taught to elementary school
children without proof. It depends on the fact that every positive integer can
be written as a product of primes which is also something taught known to
elementary school children (we will prove this result in the next section). The
statement and proof of the example were known to Euclid 2300 years ago.

Theorem A.3.4. There are infinitely many primes.

Proof. Suppose for contradiction that there are only finitely many primes:
p1, p2, . . . , pk. Put M = p1p2 · · · pk and consider the number M + 1. Either
M + 1 is prime or it can be written as a product of primes. If it is prime, we

426 Techniques of Proof

have a contradiction as it is too big to be any of the primes in our list. If it
is not prime, it can be written as a product of primes, but as none of p1, p2,
. . . , pk divide M + 1, its prime factors are also not in our list.

This technique is important enough to merit a third example.

Observation A.3.5.
√
2 is an irrational number.

Proof. Suppose for contradiction that
√
2 is rational. Then there exist integers

a and b ̸= 0 such that
√
2 = a/b. Without loss of generality2 suppose a and b

have no common factor; i.e. a/b has been reduced to lowest terms. Squaring
both sides gives 2 = a2/b2 which leads to a2 = 2b2. Thus a2 must be even and
by Exercise A.5 a is even, so a = 2m for some integer m. Substituting this
value yields 2b2 = 4m2. Thus b2 = 2m2 and again using Exercise A.5 b must
be even. Hence b = 2n for some integer n which contradicts that a/b was in
reduced form.

A.4 The Principle of Mathematical Induction

Imagine standing dominoes in such a way that if one falls over, a chain reaction
begins and all the dominoes after the one that falls are also knocked over.
This imagery illustrates the process of using the Principle of Mathematical
Induction induction as a proof technique.

Theorem A.4.1 (The Principle of Mathematical Induction). Let P (n) be a
statement about a positive integer n. If

1. P (1) is true and

2. P (k) true → P (k + 1) true for all positive integers k,

then P (n) is true for all positive integers3.

Part 1. of the Principle of Mathematical Induction is referred to as the base
case or basis step. Part 2. is called the inductive step with the assumption that
P (k) is true known as the induction hypothesis. Our first example is of an proof
by induction is a result which is quite useful and was discovered by Gauss as
a young schoolboy.

2It is important to realize that WLOG can only be used when the assumption does not
remove generality. Saying “WLOG suppose x = 3” is absurd as assigning a specific value
to x removes all generality.

3This is a theorem by Exercise A.16. It is the case that neither the Principle of Mathe-
matical Induction nor the Well Ordering Principle can be derived from first principles. One
must be accepted as an axiom then the other can be proven.

The Principle of Mathematical Induction 427

Theorem A.4.2. Let n be a postive integer. Then

1 + 2 + 4 + · · ·+ n =
n(n+ 1)

2
.

Proof. Let P (n) be the proposition that 1+ · · ·+n = n(n+1)
n . Since 1 = 1, the

P (1) base case is established. Now suppose for some positive integer k that

1 + · · ·+ k = k(k+1)
n (this is the induction hypothesis). Then

1 + 2 + 3 + · · ·+ k + (k + 1)

=
k(k + 1)

2
+ (k + 1) (by the induction hypothesis) (A.1)

=
k2 + k

2
+

2k + 2

2
(A.2)

=
k2 + 3k + 2

2
(A.3)

=
(k + 1)(k + 2)

2
. (A.4)

Since P (k+ 1) is true when P (k) is true for any positive integer k, the result
holds by the Principle of Mathematical Induction.

From this point on we will refer to the Principle of Mathematical Induction
as simply “induction”. Induction is a very important proof technique, but as
we can see from the proof of Theorem A.4.2, induction is good for establishing
that a result is true, but gives no insight as to why it is true. In induction
proofs, the result must be discovered by some other means.

For our second example of a proof by induction, we will consider an im-
portant sum in Mathematics and Computer Science. This example will be
important for a second reason in that though the statement for the Principle
of Mathematical Induction states that n is a positive integer, it also holds if
n is any nonnegative integer (in other words, we may start at 0 instead of 1
if necessary).

Theorem A.4.3 (Sum of a Geometric Series). Let a and r be real numbers
with r ̸= 1 and n a nonnegative integer. Then

a+ ar + ar2 + · · ·+ arn =
arn+1 − a

r − 1
.

Proof. For n = 0,
ar0+1 − a

r − 1
=

a(r − 1)

r − 1
= a

thus establishing the base case. Now suppose that for some nonnegative integer
k,

a+ ar + ar2 + · · ·+ ark =
ark+1 − a

r − 1
.

428 Techniques of Proof

Then

a+ ar + ar2 + · · ·+ ark + ark+1

=
ark+1 − a

r − 1
+ ark+1 (by the induction hypothesis) (A.5)

=
ark+1 − a

r − 1
+

ark+2 − ark+1

r − 1
(A.6)

=
ark+2 − a

r − 1
(A.7)

=
ar(k+1)+1 − a

r − 1
. (A.8)

There is second form of induction, known as strong induction, which can
be rather useful. It can be shown that regular induction and strong induction
are logically equivalent.

Theorem A.4.4 (Strong Induction). Let P (n) be a statement about a positive
(or nonnegative) integer n. If

1. P (1) is true and

2. P (1) ∧ p(2) ∧ · · · ∧ P (k) is true → P (k + 1) true for all positive (or non-
negative) integers k,

then P (n) is true for all positive (or nonnegative) integers.

Strong induction is useful when it is not enough to just assume that P (k)
is true, as the next example shows.

Theorem A.4.5. Let n > 1 be a positive integer. Then n can be expressed as
a product of primes4.

Proof. As 2 and 3 are prime, they are trivially a product of primes. Moreover
4 = 2 · 2. Let k ≥ 4 and suppose that k can be written as a product of primes.
If k+1 is prime, we are done. If it is not prime, then there exist integers a and
b with 2 ≤ a, b < k such that k+1 = ab. By the (strong) induction hypothesis,
a and b can be written as the product of primes, making k + 1 expressible as
a product of primes.

4This is the Fundamental Theorem of Arithmetic when it is included in the conclusion
that the factorization is unique. As this example is to illustrate strong induction, we will
not clutter the proof with a uniqueness argument.

Exercises 429

A.5 Exercises

Exercise A.1. Use a truth table to show that ¬(p ∧ q) is logically equivalent
to ¬p ∨ ¬q (This is one of DeMorgan’s Laws).

Exercise A.2. Use a truth table to show that ¬(p ∨ q) is logically equivalent
to ¬p ∧ ¬q (This is the other DeMorgan’s Law).

Exercise A.3. Use a truth table to show that p→ q is logically equivalent to
¬p ∨ q.

Exercise A.4. Prove that if n is odd, then n2 is odd.

Exercise A.5. Show that n2 even implies n must be even.

Exercise A.6. Prove that if n2 + 4 is odd, then n is odd.

Exercise A.7. Prove that if n2 + 3 is odd, then n is even.

Exercise A.8. Show that the square root of a positive irrational number is
irrational; that is, if x > 0 is irrational, then

√
x is also irrational.

Exercise A.9. Prove that the sum of an irrational number and a rational
number must be irrational.

Exercise A.10. Show that for a positive integer n, n < 2n.

Exercise A.11. Prove for a positive integer n that 2n < n! where n! :=
n · (n− 1) · (n− 2) · · · 3 · 2 · 1.

Exercise A.12. Show that n3 − n is divisible by 3 whenever n is a positive
integer.

The next three exercises illustrate that for induction arguments, all that
is really needed is a starting point.

Exercise A.13. Prove for a positive integer n > 1 that n! < nn.

Exercise A.14. Show that for an integer n > 4, n2 < 2n.

Exercise A.15. Prove for a positive integer n > 6 that 3n < n!.

Exercise A.16. The Well Ordering Principle states that any nonempty subset
of positive integers has a least element. Prove that the Principle of Mathemat-
ical Induction is logically equivalent to the Well Ordering Principle; that is
PMI ⇐⇒ WOP .

Exercise A.17. Prove that (regular) induction is logically equivalent to strong
induction; that is, PMI ⇐⇒ strong induction.

B

Useful Tools from Analysis and Topology

B.1 Definitions

Definition B.1.1 (Euclidean Distance). Let x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) be points in Rn. Then the Euclidean distance between x and
y, denoted ||x− y||, is

||x− y|| :=

√√√√ n∑
i=1

(xi − yi)2.

Many distances (metrics) exist in Mathematics, and the Euclidean Dis-
tance is the name given to the distance based upon applying the Pythagorean
Theorem (Theorem B.2.1) to determining how far apart points are in Rn.

Definition B.1.2 (ϵ-neighborhood). Let x be a point in space and ϵ a positive
real number. Then an ϵ-neighborhood, written Nϵ(x) is

Nϵ(x) := {y ∈ Rn | ||x− y|| < ϵ}.

It is now natural to define global and local extrema, but we note that these
definitions were stated in Section 2.1. We know introduce some important
topological ideas.

Definition B.1.3 (Interior, Exterior, and Boundary). Let R be a subset of a
universal set Ω.

• The Guarantee of Integer Solutions in Network Flow Problems The interior
of R, denoted int(R), is

int(R) := {x ∈ R | ∃ϵ > 0 such that Nϵ(x) ⊆ R}.

• The Guarantee of Integer Solutions in Network Flow Problems The exte-
rior of R, denoted ext(R), is

ext(R) := {x ∈ Ω | ∃ϵ > 0 such that Nϵ(x) ⊆ Ω\R}.

DOI: 10.1201/9780367425517-B 430

https://doi.org/10.1201/9780367425517-B

Definitions 431

A

B

C

-4 -2 0 2 4

-2

-1

0

1

2

FIGURE B.1
Point A inside a region R, C outside R, and B on the boundary of R.

• The Guarantee of Integer Solutions in Network Flow Problems x is a
boundary point of R if and only if for all ϵ > 0 there exist y1, y2 ∈ Nϵ(x)
such that y1 ∈ R but y2 ∈ Ω\R. The boundary of R is the collection of all
boundary points of R.

In Figure B.1, A is an interior point of R, C an exterior point of R, and
B a boundary point of R.

Definition B.1.4 (Metric). A metric on a set X is a function

d : X ×X → R

such that

1. d(x, y) ≥ 0 for all x, y ∈ X with d(x, y) = 0 iff and only if x = y (definite-
ness),

2. d(x, y) = d(y, x) for all x, y ∈ R (homogeneity), and

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality).

432 Useful Tools from Analysis and Topology

B.2 Useful Theorems

From high school Geometry, we have

Theorem B.2.1 (Pythagorean Theorem). Let a and b be the lengths of the
legs of a right triangle with its hypotenuse having length c. Then

a2 + b2 = c2.

A more generalized version of the Pythagorean Theorem is

Theorem B.2.2 (The Law of Cosines). Let a, b, and c be the lengths of the
sides of a triangle with c opposite angle θ. Then

c2 = a2 + b2 − 2ab cos θ.

Note that if c is the length of the hypotenuse of a right triangle, then
cos θ = 0 and the Law of Cosines reduces to the Pythagorean Theorem.

Theorem B.2.3 (The Triangle Inequality). Let x and y be in Rn. Then

||x+ y|| ≤ ||x||+ ||y||. (B.1)

Note that if n = 1, i.e. x and y are real numbers, then B.1 reduces to

|x+ y| ≤ |x|+ |y|.

Theorem B.2.4 (Cauchy-Schwarz Inequality). For all vectors u and v of an
inner product space

|⟨u,v⟩|2 ≤ ⟨u,u⟩ · ⟨v,v⟩ (B.2)

where ⟨·, ·⟩⟨·, ·⟩ is the inner product.

Bibliography

[1] Kendall Atkinson and Weimin Han; Elementary Numberical Analysis, 3rd
edition, John Wiley and Sons (2004).

[2] N.L. Biggs, E.K. Lloyd, and R.J. Wilson; Graph Theory 1736–1936,
Clarendon Press, Oxford, 1976.

[3] Robert G. Bland, New Finite Pivoting Rules for the Simplex Method,
Mathematics of Operations Research, vol. 2, no. 2 (1977), 103–107.

[4] Otakar Bor̊uvka, O jistém problému minimélném (About a certain min-
imal problem). Préce Mor. Přérodověd. Spol. V Brně III (in Czech and
German), 3 (1926), 37–58.

[5] Miklós Bóna, Introduction to Enumerative and Analytic Combinatorics,
2nd edition, CRC Press (2016).

[6] Anthony Brabazon, Michael O’Neill, and Seán McGarraghy, Natural
Computing Algorithms, 1st edition, Springer Publishing Company (2015).

[7] Anthony Brabazon and Seán McGarraghy, Foraging-Inspired Optimisa-
tion Algorithms, 1st edition, Springer Publishing Company (2018).

[8] Corinne Brucato Bauman, The Traveling Salesman Problem, Mas-
ter’s Thesis, University of Pittsburgh, D-Scholarship@Pitt, http://

d-scholarship.pitt.edu/id/eprint/18770 (2013).

[9] Gary Chartrand, Linda Lesniak, and Ping Zhang, Graphs and Digraphs,
6th edition, CRC Press (2016).

[10] William J. Cook, In Pursuit of the Traveling Salesman: Mathematics at
the Limit of Computation, Princeton University Press, 2012.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein; An Introduction to Algorithms, 3rd edition, MIT Press (2009).

[12] Gérard Cornuéjols, Revival of the Gomory Cuts in the 1990’s,
Gérard’s notes, Carnegie Mellon University, “https://www.andrew.cmu.
edu/user/gc0v/webpub/gomory.pdf”

[13] R.J. Dakin, A Tree-Search Algorithm for Mixed Integer Programming
Problems, Comp. J., 8, 250–255 (1964).

433

https://www.andrew.cmu.edu
http://d-scholarship.pitt.edu
http://d-scholarship.pitt.edu
https://www.andrew.cmu.edu

434 Bibliography

[14] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson, Solution of a Large-
Scale Traveling-Salesman Problem, Journal of the Operations Research
Society of America, vol. 2, no. 4 (1954).

[15] Dictionary.com https://www.dictionary.com/browse/heuristic?s=t

[16] The Little Oxford Dictionary, 6th edition, Oxford University Press
(1986).

[17] Simon Hill, Why do we call it spam? Blame spiced ham shoulder, Monty
Python, and Usenet, digitaltrends, https://www.digitaltrends.com/
computing/why-junk-email-is-spam/, February 8, 2015.

[18] Yefim A. Dinitz, An Algorithm for the Solution of the Problem of Maximal
Flow in a Network with Power Estimation, Doklady Akademii Nauk SSSR
(Proceedings of the USSR Academy of Sciences), vol. 11 (1970), 1277–
1280.

[19] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni, Ant System: Op-
timization by a Colony of Cooperating Agents, IEEE Transactions on
Systems, Man, and Cybernetics—Part B, vol. 26, no. 1 (1996), pp. 29–
41.

[20] Mario Dorigo and Luca Maria Gambardella, Ant Colony System: A co-
operative Learning Approach to the Travelling Salesman Problem, IEEE
Transactions on Evolutionary Computation, vol. 1 (1997), pp. 53–66.

[21] Jack Edmonds and Richard Karp, Theoretical Improvements in Algo-
rithmic Efficiency for Network Flow Problems, Journal of ACM, vol. 19
(1972), 248–264.

[22] Peter Elias, Alex Feinstein, Claude E. Shannon, A Note on the Maximum
Flow Through a Network, IRE Transactions on Information Theory, vol.
2, no. 4 (December 1956), 117–119.

[23] Leonhard Euler, Solution of a Curious Question which does not seem to
have been Subjected to any Analysis, Mémoires de l’Academie Royale des
Sciences et Belles Lettres, Année 1759, vol. 15, Berlin (1766), 310–337.

[24] Lester Randolf Ford, Jr. and Delbert Ray Fulkerson, Maximum Flow
Through a Network, Canadian Journal of Mathematics, vol. 8 (1956),
399–404.

[25] Lester Randolf Ford, Jr. and Delbert Ray Fulkerson, A Simple Algorithm
for Finding Maximal Network Flows and an Application to the Hitchcock
Problem, Canadian Journal of Mathematics, vol. 9 (1957), 210–218.

[26] L.R. Foulds, Optimization Techniques, Springer-Verlag (1981).

https://www.dictionary.com
https://www.digitaltrends.com
https://www.digitaltrends.com
https://Dictionary.com

Bibliography 435

[27] Futureworld, Director: Richard T. Heffron, American International Pic-
tures (1976), Film.

[28] Rivka Galchen, The Mysterious Disappearance of a Revolutionary Math-
ematician, New Yorker, May 9, 2022.

[29] R.E. Gomory, Outline of an Algorithm for Integer Solutions to Linear
Programs, Bull. Am. Math. Society 14 (1958), 275–278.

[30] Jonathan L. Gross and Jay Yellen, Graph Theory and its Applications,
2nd edition, CRC Press (2006).

[31] Jonathan L. Gross, Jay Yellen, and Ping Zhang; The Handbook of Graph
Theory, 2nd edition, CRC Press (2013).

[32] R.J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-
tice, 2nd edition, OTexts: Melbourne, Australia (2018). OTexts.com/fpp2
Accessed on 05/13/20

[33] Alan J. Hoffman and David Gale, Appendix to I Heller and CB Tompkin,
An Extension of a Theorem of Dantzig’s, in HW Kuhn and AW Tucker’s
(editors) Linear Inequalities and Related Systems, Annals of Mathematics
Studies, 38, Princeton (NJ): Princeton University Press, (1956) pp. 247-
–254.

[34] Alan J Hoffman and Joseph B Kruskal, Integral Boundary Points of Con-
vex Polyhedra, in HW Kuhn and AW Tucker’s (editors) Linear Inequali-
ties and Related Systems, Annals of Mathematics Studies, 38, Princeton
(NJ): Princeton University Press, (1956) pp. 223–246.

[35] E.E. Holmes, M.D. Scheuerell, and E.J. Ward, Applied Time Series Anal-
ysis for Fisheries and Environmental Data. NOAA Fisheries, Northwest
Fisheries Science Center, 2725 Montlake Blvd E., Seattle, WA 98112.
https://atsa-es.github.io/atsa-labs/

[36] Vojtěch Jarńık, O jistém problému minimálńım (About a minimal prob-
lem), Práce Mor. Př́ırodvěd. Spol. v Brně, Acta Societ. Scient. Natur.
Moravicae 6 (1930), 57–63.

[37] Richard M. Karp, Reducibility Among Combinatorial Problems; in R.E.
Miller, J.W. Thatcher, and J.D. Bohlinger (eds.) Complexity of Computer
Computations, Plenum Press, New York, pp. 85–103 (1972).

[38] William Karush, Minima of Functions of Several Variables with Inequal-
ities as Side Constraints (M.Sc. thesis). Dept. of Mathematics, Univ. of
Chicago, Chicago, Illinois (1939).

[39] J.B. Kruskal, On the Shortest Spanning Tree of a Graph and the Traveling
Salesman Problem, Proceedings of the American Mathematical Society,
vol. 7 (1956), pp. 48–50.

https://atsa-es.github.io/
https://OTexts.com/fpp2

436 Bibliography

[40] Harold W. Kuhn and Albert W. Tucker, Nonlinear Programming. Pro-
ceedings of 2nd Berkeley Symposium. University of California Press,
Berkeley, pp. 481–492 (1951).

[41] A.H. Land and A.G. Doig; An Automatic Method of Solving Discrete
Programming Problems, Econometrica, vol. 28, no. 3 (July, 1960), pp.
497–520.

[42] Robert Nau, Introduction to ARIMA models, Duke University. Published
electronically at https://people.duke.edu/~rnau/411arim.htm.

[43] A.L. Peressini, F.E. Sullivan, J.J. Uhl Jr., The Mathematics of Nonlinear
Programming, Springer (1991).

[44] David Poole, Linear Algebra, a Modern Introduction, 3rd edition,
Brooks/Cole, Cengage Learning (2011).

[45] R.C. Prim, Shortest Connection Networks and Some Generalizations, Bell
System Technical Journal, vol. 36 (1957), 1389–1401.

[46] The Puzzle Museum https://www.puzzlemuseum.com/

[47] Cliff Ragsdale, Spreadsheet Modeling & Decision Analysis: A Practical
Introduction to Business Analytics, 8th edition, Brooks/Cole, Cengage
Learning (2015).

[48] Kenneth H. Rosen, Discrete Mathematics and Its Applications, 8th edi-
tion, McGraw-Hill (2019).

[49] Conor Ryan, Michael O’Neill, and J.J. Collins, eds., Handbook of Gram-
matical Evolution, 1st edition, Springer Publishing Company (2018).

[50] Alexander Schrijver; Theory of Linear and Integer Programming, John
Wiley & Sons (1999).

[51] Benjamin L. Schwartz, Possible Winners in Partially Completed Tourna-
ments SIAM Review, vol. 8, no. 3 (1966) pp. 302–308.

[52] P.D. Seymour, Decomposition of Regular Matroids in Linear Inequali-
ties and Related Systems, Journal of Combinatorial Theory (B), vol. 28,
Elsevier, (1980) pp. 305–359.

[53] N.J.A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences,
published electronically at https://oeis.org.

[54] Shumway, Robert H. and Stoffer, David S. Time Series Analysis and
Its Applications, 4th edition, Springer Statistics Series. https://www.
stat.pitt.edu/stoffer/tsa4/

https://people.duke.edu
https://www.puzzlemuseum.com
https://oeis.org
https://www.stat.pitt.edu
https://www.stat.pitt.edu

Bibliography 437

[55] Krzysztof Socha and Marco Dorigo, Ant Colony Optimization for Con-
tinuous Domains, European Journal of Operational Research, vol. 185,
no. 3 (2008), pp. 1155–1173.

[56] Thomas Stützle and Holger H. Hoos, MAX-MIN Ant System, Future
Generation Computer Systems, vol. 16, no. 8 (2000), pp. 889–914.

[57] Luara Taalman and Peter Kohn, Calculus, W.H. Freeman and Company
(2014).

[58] Lloyd N. Trefethen and David Bau III, Numerical Linear Algebra, SIAM
(1997).

[59] William R. Wade, An Introduction to Analysis, 4th edition, Pearson
(2010).

[60] Hassler Whitney, Congruent Graphs and the Connectivity of Graphs,
American Journal of Mathematics, vol. 54 (1932), pp. 150–168.

[61] Eric W. Weisstein, Unimodular Matrix, MathWorld–A Wolfram Web Re-
source, https://mathworld.wolfram.com/UnimodularMatrix.html.

[62] Westworld, Director: Michael Crichton, Metro-Goldwyn-Mayer (1973),
Film.

[63] Hassler Whitney, A Theorem of Graphs, Annals of Mathematics, Apr.,
1931, Second Series, vol. 32, no. 2 (Apr., 1931), pp. 378–390.

[64] Wikipedia, https://en.wikipedia.org/wiki/Main_Page.

https://mathworld.wolfram.com
https://en.wikipedia.org

http://taylorandfrancis.com

Index

LU factorization, 67
ℓ1 matrix norm, 47
ℓ1 vector norm, 46
ℓ2 vector norm, 46
ℓ∞ matrix norm, 47
ℓ∞ vector norm, 46
ϵ-neighborhood, 430
σ-field, 379
f -unsaturated, 310
k-connected graph, 297
p norm, 246

absolute maximizer, 9
absolute maximum, 9
absolute minimizer, 10
absolute minimum, 10
Addition Principle, 268
adjacent vertices, 287
affine combination, 209
affine hull, 210
AGM, 187

proof, 245
Algorithm

Cheapest Insertion, 364
Closest Insertion, 360

algorithm, 12, 197
ant foraging optimization,

204–206
evolutionary, 197, 199–204
greedy, 328

ant foraging optimization algorithm,
204–206

antecedent, 422
arc of a graph, 285
ARIMA, 411
arithmetic complexity, 19
arithmetic mean, 187

Arithmetic Mean-Geometric Mean
Inequality, 187

proof, 245
artificial variable, 105
asymptotic notation, 19
augmenting semipath, 310
Autocorrelation, 408
average value of a function, 140

back substitution, 34, 36
backward edge, 310
base case of induction, 426
baseball elimination problem,

321
basic feasible solution, 94
basic variable, 94
basis, 53
basis step of induction, 426
Bayes’ Theorem

general case, 386
two events, 385

Bernoulli trials, 394
Bessel’s Inequality, 84
biconditional, 423
big O notation, 19
binomial coefficient, 271, 274

symmetry property, 272
Binomial Distribution, 394
bipartite graph, 292

complete, 292
Bland’s Rule, 109
Borel Field, 379
boundary, 431
boundary point, 431
bounded function, 11
bounded set, 30
bridge, 298

439

440 Index

canonical Simplex tableau, 96, 104
capacity constraints, 304
capacity function, 303
capacity of a cut, 306
capacity of an edge, 303
Cauchy-Schwarz Inequality, 246
ceiling function, 282
Chairperson Identity, 277
Cholesky decomposition, 69
Clairaut’s Theorem - two variable,

147
cofactor of a square matrix, 42
column space, 54
column vector, 37
combination, 271

affine, 209
conical, 209
convex, 209
nonnegative, 209

complement of a set, 378
complete bipartite graph, 292
complete graph, 291
complete multipartite graph, 293
complexity, 14
complexity class, 23
components of a graph, 294
computational complexity, 14
concave function

multivariable, 237
single variable, 233

conclusion, 422
condition number of a matrix, 50
conditional statement, 422

contrapositive, 422
converse, 422
inverse, 422

conical combination, 209
conical hull, 210
conjugate transpose, 37
conjunction of propositions, 421
connected graph, 294
connectivity

of a graph = vertex
connectivity, 296

edge, 298

k, 297
vertex, 296

consequent, 422
conservation equation, 304
constraint, 12
continuous function, 138
contrapositive of a conditional

statement, 422
converse of a conditional statement,

422
convex

strongly, 249
convex combination, 209
convex cone with vertex at the

origin, 214
convex function

multivariable, 237
single variable, 226

convex hull, 210
convexity

first-order condition, 228
first-order condition -

multivariable, 240
second-order condition, 231
second-order condition -

multivariable, 241
corner point of a solution set, 30
Cramer’s Rule, 44
critical point

single variable, 153
two-variable function, 157

cut
capacity, 306
edge, 298
minimum, 307
vertex-, 296

cut in a network, 305
cut vertex, 295
cut-plane, 130
cycle, 289

Hamiltonian, 290
cycling (Simplex Method), 109

degeneracy (Simplex Method), 109
degenerate pivot, 109

Index 441

degree
out, 287

degree of a vertex, 287
digraph, 287
in, 287
out, 287

dense graph, 287
derivative, 137
derivative, partial

two-variable functions, 146
determinant of a 2× 2 matrix, 41
determinant of an n× n matrix, 42

expansion by minors, 42
differentiable, 137
digraph, 286

underlying, 303
Dijkstra’s Algorithm, 334
dimension

set, 218
vector space, 53

Dinic’s Algorithm, 309
Dinitz’s Algorithm, 309
directed graph, 286
directional vectors, 222
Dirichlet Drawer Principle, 281
disconnected graph, 294
discriminant of a multivariable

function, 158
disjoint sets, 378
disjunction of propositions, 421
distance in a graph, 333
Division Principle, 270
dot product, 38
Duality

Strong, 103
Weak, 103

edge
capacity, 303
saturated, 304

edge connectivity, 298
edge cut, 298

minimum, 298
edge of a graph, 285
edge:unsaturated, 304

Edmonds-Karp, 309
eigenvalue, 57
eigenvector, 57
elementary matrix, 67
elementary row operations, 34
elements (of a set), 376
empty graph, 286, 289, 291
empty set, 377
epigraph, 235
equal graphs, 288
Euclidean distance, 430
Euclidean norm, 46
event, 376
evolutionary algorithm, 197, 199–204

chromosome, 197, 202, 203
crossover, 197, 198, 200–203
fitness, 197–202
gene, 197
mutation, 197, 199–203
selection, 197–201, 203
variation, 197–201, 203

expansion by minors, 42
expected value, 391
Extended Mean Value Theorem, 139
exterior, 430
extrema, 10
extreme value, 10

factorial, 268
feasible region, 30, 88

vertex, 30
Fermat’s Theorem for Local

Extrema, 153
two variable, 158

Finite Basis Theorem, 222
first primal form, 102
first-order condition of convexity, 228

multivariable, 240
flow

value of the, 305
maximum, 305

flow in a network, 303
forest, 290
forward edge, 310
Frobenius matrix norm, 47

442 Index

Fundamental Principle of Duality,
103

Fundamental Theorem of Calculus,
141

Fundamental Theorem of Invertible
Matrices, 56

Fundamental Theorem of Linear
Programming, 90

Fundamental Theorem of LP, 223

Gauss-Jordan elimination, 17, 34, 35
Gaussian elimination, 17, 35
general linear group, 65
general linear group of matrices, 59
Generalized Inclusion-Exclusion, 269
Generalized Pigeonhole Principle,

282
Generalized Reduced Gradient

algorithm, 185
Geometric Distribution, 395
geometric heuristic, traveling

salesperson problem, 370
geometric mean, 187
glb, 11
global maximizer, 9
global maximum, 9
global minimizer, 10
global minimum, 10
Gomory cut, 130
gradient, 147, 156

multiple variables, 147
two variables, 147

Gradient Descent, 181
Gram-Schmidt Process, 78
graph, 285

k-connected, 297
arc, 285
bipartite, 292
complete multipartite, 293
components, 294
connected, 294
connectivity, 296
dense, 287
directed, 286
disconnected, 294

distance, 333
edge, 285
edge connectivity, 298
empty, 286, 289, 291
Hamiltonian, 290
multipartite, 293
node, 285
order, 286
planar, 352
regular, 301
simple, 286
size, 286
sparse, 287
total degree, 287
trivial, 289
underlying, 303
vertex, 285
vertex connectivity, 296
weighted, 325

graphs
equal, 288
isomorphic, 288

greatest lower bound, 11
greedy algorithm, 328
group (Abstract Algebra), 64

Hölder’s Inequality, 246
half space

lower, 219
upper, 219

Hamiltion’s Icosian Game, 351
Hamiltonian cycle, 290
Hamiltonian graph, 290
Hamiltonian path, 290
harmonic mean, 196
Hermitian matrix, 37
Hessian, 147
heuristic, 13, 197
Hilbert matrix, 51
hull

affine, 210
conical, 210
convex, 210
linear, 210

Hypergeometric Distribution, 396

Index 443

hyperplane, 218
hypograph, 236
hypothesis, 422

Icosian Game, 351
identifying other LP solutions in

Solver, 116
identity, 40
identity matrix, 40
ill-conditioned matrix, 51
in-degree, 287
in-neighborhood, 287
incident, 287
Inclusion-Exclusion Principle, 269
Inclusion-Exclusion Principle for

Probability, 382
Inclusion-Exclusion, Generalized, 269
indefinite quadratic form or

symmetric matrix, 169
independent events, 388
induced matrix norm, 49
induced subgraph, 288
induction

strong, 428
induction hypothesis, 426
infimum, 11
initial Simplex tableau, 96
interior, 430
Intermediate Value Theorem, 138
intermediate vertex, 303
intersection of sets, 377
intractable problem, 21
inverse of a 2× 2 matrix, 41
inverse of a 3× 3 matrix, 43
inverse of a conditional statement,

422
inverse of an n× n matrix, 44
invertible matrix, 40
isometry, 77
isomorphic graphs, 288

Jacobian, 148
Jensen’s Inequality, 245

KKT conditions, 164
knight’s tour, 351

Kruskal’s Algorithm, 328

Lagrange multipliers, 162
Lagrange’s Remainder Theorem, 142
Lagrangian, 164
lattice point, 122
Law of Cosines, 432
leaf, 290
least upper bound, 11
length

path, 289
trail, 289
walk, 289

level curve, 156
linear combination, 209
linear function, 29
linear hull, 210
linear regression, 174
linearly dependent, 53
linearly independent, 53
local maximizer, 9
local maximum, 9
local minimizer, 10
local minimum, 10
lower bound, 11
lower half space, 219
lower triangular matrix, 67
lub, 11

magnitude of a vector, 38
matrix, 36

ℓ1 norm, 47
ℓ∞ norm, 47
m× n, 36
cofactor, 42
condition number, 50
determinant (2× 2), 41
determinant (n× n), 42
determinant, expansion by

minors, 42
Frobenius norm, 47
Hermitian, 37
Hilbert, 51
identity, 40
ill-conditioned, 51

444 Index

induced norm, 49
invertible, 40
lower triangular, 67
minor, 41
multiplication, 39
norm, 47
orthonormal, 75
permutation, 76, 84
self-adjoint, 37
singular, 41
sub-, 36
subordinate norm, 49
symmetric, 37
totally unimodular, 59
transpose, 37
unimodular, 58
unit lower triangular, 67
upper triangular, 44, 67
well-conditioned, 51

matrix norm
induced, 49
subordinate, 49

Max Cut Problem, 185
Max-Flow Min-Cut Theorem, 309
maximizer, 9

strict local, 9
absolute, 9
global, 9
local, 9
relative, 9
strict absolute, 9
strict global, 9
strict relative, 9

maximum
absolute, 9
global, 9
local, 9
relative, 9
strict absolute, 9
strict global, 9
strict local, 9
strict relative, 9

maximum flow, 305
mean

of a random variable, 392

arithmetic, 187
geometric, 187
harmonic, 196
quadratic, 196
root squared, 196

Mean Value Theorem, 139
Mean Value Theorem for Integrals,

140
Mean Value Theorem, Extended, 139
metric, 340, 431
metric space, 340
minimizer

absolute, 10
global, 10
local, 10
relative, 10
strict absolute, 10
strict global, 10
strict local, 10
strict relative, 10

minimum
absolute, 10
global, 10
local, 10
relative, 10
strict absolute, 10
strict global, 10
strict local, 10
strict relative, 10

minimum cut, 307
minimum edge cut, 298
minimum vertex cut, 296
Minkoski’s Inequality, 247
Minkowski sum, 221
Minkowski-Weyl Theorem, 222
minor matrix, 41
model of computation, 23
modified linear programming

problem, 94
multiedges, 286
multigraph, 286
multinomial coefficient, 277
Multinomial Theorem, 278
multipartite graph, 293
Multiplication Principle, 268

Index 445

multiplicative identity, 40

naive probability, 382
Nearest Neighbor Algorithm for

TSP, 355
necessary condition, 423
negation of a proposition, 420
Negative Binomial Distribution, 396
negative definite, 169
negative semidefinite, 169
neighbor of a vertex (Graph

Theory), 287
neighborhood of a point (Analysis), 9
neighborhood of a vertex (Graph

Theory), 287
in-, 287
out-, 287

net flow into a vertex, 304
net flow out of a vertex, 304
network, 303

cut, 305
Newton’s Method for Optimization

multivariable, 176
single-variable, 175

node of a graph, 285
non-negativity constraints, 88
nonbasic variables, 94
nonnegative combination, 209
norm

Euclidean, 46
Frobenius, 47
matrix, 47
vector, 45

norm, matrix
ℓ1, 47
ℓ∞, 47
Frobenius, 47
induced, 49
subordinate, 49

norm, vector
ℓ1, 46
ℓ2, 46
ℓ∞, 46

Normal Distribution, 161
normalization of a vector, 38

null set, 377
null space, 54
nullity, 55

objective function, 12
order of a graph, 286
orthogonal, 71

basis, 72
set, 71

orthonormal
basis, 73
set, 73

orthonormal matrix, 75
other LP solutions in Solver, 116
out degree, 287
out-degree, 287
out-neighborhood, 287

partial derivative
two-variable functions, 146

partite sets, 292
partition of a set, 385
Pascal’s Triangle, 273
path, 289

Hamiltonian, 290
permutation, 270
permutation matrix, 76, 84
petaflop, 22
Pigeonhole Principle, 281

Generalized, 282
pivot

column for the Simplex Method,
96

degenerate, 109
element, 97
operations, 97
row for the Simplex Method, 96

planar graph, 352
polyhedron, 219
polytope, 219
positive definite, 169
positive semidefinite, 64, 169
posynomial, 192
Prim’s Method, 331
probability density function, 391

446 Index

probability distribution of a random
variable, 391

probability function, 380
probability mass function, 391
proper subgraph, 287
proposition

conditional statement, 422
conjunction, 421
disjunction, 421
negation, 420

proposition (logic), 420
Pythagorean Theorem, 432

quadratic form, 168
quadratic mean, 196

RAND Corporation, 353
random variable, 389

expected value, 391
mean, 392
probability density function, 391
probability distribution, 391
probability mass function, 391
standard deviation, 393
variance, 393

rank, 55
Rank Theorem, 55
reduced cost, 119
reduced row echelon form, 36
regular graph, 301
relative maximizer, 9
relative maximum, 9
relative minimizer, 10
relative minimum, 10
Rolle’s Theorem, 139
root mean squared, 196
row echelon form, 35

reduced, 36
row space, 54
row vector, 37
runtime of an algorithm, 14

saddle point, 158
sample space, 376
saturated edge, 304
scalar multiplication, 38

Second Derivative Test
multivariable, 158

second-order condition of convexity,
231

multivariable, 241
self-adjoint matrix, 37
semipath, 310

augmenting, 310
set, 376

affine, 214
compliment, 378
conical, 214
convex, 214
empty, 377
intersection, 377
null, 377
union, 377

set equality, 377
sets

disjoint, 378
shadow price, 119
sieve of Eratosthenes, 13
simple graph, 286
Simplex Method

cycling, 109
degeneracy, 109

singleton, 42
singular matrix, 41
sink, 303
size of a graph, 286
slack variable, 94
Solver

identifying other LP solutions,
116

source, 303
span, 53, 210
spanning subgraph, 287
spanning tree, 325
sparse graph, 287
standard deviation of a random

variable, 393
Stationary, 407
Steepest Descent, 181
strict absolute maximizer, 9
strict absolute maximum, 9

Index 447

strict absolute minimizer, 10
strict absolute minimum, 10
strict global maximizer, 9
strict global maximum, 9
strict global minimizer, 10
strict global minimum, 10
strict local maximizer, 9
strict local maximum, 9
strict local minimizer, 10
strict local minimum, 10
strict relative maximizer, 9
strict relative maximum, 9
strict relative minimizer, 10
strict relative minimum, 10
Strong Duality, 103
strong induction, 428
strongly convex, 249
subgraph, 287

induced, 288
proper, 287
spanning, 287

submatrix, 36
subordinate matrix norm, 49
subset, 377
subspace, 53
sufficient condition, 423
Summit super computer, ORNL, 22
sumset, 221
supremum, 11
surplus variable, 104
symmetric matrix, 37
symmetric property of the binomial

coefficients, 272
system of linear inequalities, 30

tableau, 95
tangent line, 141
Taylor Polynomial, 141
Taylor series

single variable, 142
two variable, 148

Taylor’s Formula, 143
multivariable, 149

Taylor’s Theorem, 142
The Axioms of Probability, 380

The Binomial Theorem, 274
The Handshake Lemma, 299
total degree of a graph, 287
total flow into a vertex, 304
total flow out of a vertex, 304
totally unimodular matrices, 59
tour, 290

knight, 351
tractable, 21
trail, 289
transpose

conjugate, 37
transpose of a matrix, 37
traveling salesperson problem

geometric heuristic, 370
tree, 290

spanning, 325
triangle (graph), 289
triangle inequality, 46, 431, 432
trivial graph, 289
truth table, 420
Turing machine, 23

underlying
digraph, 303
graph, 303

unimodular matrix, 58
union of sets, 377
unit lower triangular matrix, 67
unit vector, 38
unsaturated edge, 304
upper bound, 11
upper half space, 219
upper triangular matrix, 44, 67

value of the flow, 305
variable

artificial, 105
basic, 94
slack, 94
surplus, 104

variance of a random variable, 393
vector, 37, 144

ℓ1 norm, 46
column, 37

448 Index

magnitude, 38
norm, 45
norm ℓ2, 46
norm ℓ∞, 46
normalize, 38
row, 37
unit, 38

vector space, 52
vertex

cut, 295
intermediate, 303
of a feasible region (linear

programming), 30, 89
of a graph (graph theory), 285

vertex connectivity, 296

vertex cut, 296
minimum, 296

WAG, 193
walk, 289
Weak Duality, 103
weak duality in flows, 306
weight finding algorithm for the

AGM, 193
weighted graph, 325
Well Ordering Principle, 429
well-conditioned matrix, 51

Young’s Inequality, 245

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	List of Notation
	I. Preliminary Matters
	1. Preamble
	1.1. Introduction
	1.2. Software
	1.3. About This Book
	1.3.1. Presentation
	1.3.2. Contents

	1.4. One-Semester Course Material
	1.5. Acknowledgments

	2. The Language of Optimization
	2.1. Basic Terms Defined
	2.2. When a Max or Min Is Not in the Set
	2.3. Solving an Optimization Problem
	2.4. Algorithms and Heuristics
	2.5. Runtime of an Algorithm or a Heuristic
	2.6. For Further Study
	2.7. Keywords
	2.8. Exercises

	3. Computational Complexity
	3.1. Arithmetic Complexity
	3.2. Asymptotic Notation
	3.3. Intractability
	3.4. Complexity Classes
	3.4.1. Introduction
	3.4.2. Time, Space, and Big O Notation
	3.4.3. The Complexity Class P
	3.4.4. The Complexity Class NP
	3.4.5. Utility of Complexity Classes

	3.5. For Further Study
	3.6. Keywords
	3.7. Exercises

	4. Algebra Review
	4.1. Systems of Linear Inequalities in Two Variables – Geometric Solutions
	4.1.1. Examples

	4.2. Solving Systems of Linear Equations Using Linear Algebra
	4.2.1. Gauss-Jordan Elimination
	4.2.2. Gaussian Elimination Compared with Gauss-Jordan Elimination

	4.3. Linear Algebra Basics
	4.3.1. Matrices and Their Multiplication
	4.3.2. Identity Matrices, Inverses, and Determinants of Matrices
	4.3.3. Solving Systems of Linear Equations via Cramer’s Rule
	4.3.4. Vector and Matrix Norms
	4.3.5. Vector Spaces

	4.4. Matrix Properties Important to Optimization
	4.4.1. Eigenvalues
	4.4.2. Unimodular Matrices

	4.5. Keywords
	4.6. Exercises

	5. Matrix Factorization
	5.1. LU Factorization
	5.2. Cholesky Decomposition
	5.3. Orthogonality
	5.4. Orthonormal Matrices
	5.5. The Gram-Schmidt Process
	5.6. QR Factorization
	5.7. Keywords
	5.8. For Further Study
	5.9. Exercises

	II. Linear Programming
	6. Linear Programming
	6.1. A Geometric Approach to Linear Programming in Two Dimensions
	6.1.1. Example
	6.1.2. Summary
	6.1.3. Keywords

	6.2. The Simplex Method: Max LP Problems with Constraints of the Form ≤
	6.2.1. Introduction
	6.2.2. Slack Variables
	6.2.3. The Method
	6.2.4. Summary
	6.2.5. Keywords

	6.3. The Dual: Minimization with Problem Constraints of the Form ≥
	6.3.1. How It Works
	6.3.2. Why It Works
	6.3.3. Keywords

	6.4. The Big M Method: Max/Min LP Problems with Varying Constraints
	6.4.1. Maximization Problems with the Big M Method
	6.4.2. Minimization Problems with the Big M Method

	6.5. Degeneracy and Cycling in the Simplex Method
	6.6. Exercises

	7. Sensitivity Analysis
	7.1. Motivation
	7.2. An Excel Example
	7.2.1. Solver’s Answer Report
	7.2.2. Solver’s Sensitivity Report

	7.3. Exercises

	8. Integer Linear Programming
	8.1. Introduction
	8.2. Dakin’s Branch and Bound
	8.3. Gomory Cut-Planes
	8.4. For Further Study
	8.5. Exercises

	III. Nonlinear (Geometric) Programming
	9. Calculus Review
	9.1. Derivatives and Continuity
	9.2. Taylor Series for Functions of a Single Variable
	9.3. Newton’s Method
	9.4. Vectors
	9.5. Partial Derivatives
	9.6. The Taylor Series of a Function of Two Variables
	9.7. Exercises

	10. A Calculus Approach to Nonlinear Programming
	10.1. Using Derivatives to Find Extrema of Functions of a Single Variable
	10.2. Calculus and Extrema of Multivariable Functions
	10.3. Exercises

	11. Constrained Nonlinear Programming: Lagrange Multipliers and the KKT Conditions
	11.1. Lagrange Multipliers
	11.2. The KKT Conditions
	11.3. Exercises

	12. Optimization Involving Quadratic Forms
	12.1. Quadratic Forms
	12.2. Definite and Semidefinite Matrices and Optimization
	12.3. The Role of Eigenvalues in Optimization
	12.4. Keywords
	12.5. Exercises

	13. Iterative Methods
	13.1. Newton’s Method for Optimization
	13.1.1. Single-Variable Newton’s Method for Optimization
	13.1.2. Multivariable Newton’s Method for Optimization

	13.2. Steepest Descent (or Gradient Descent)
	13.2.1. Generalized Reduced Gradient

	13.3. Additional Geometric Programming Techniques
	13.4. Exercises

	14. Derivative-Free Methods
	14.1. The Arithmetic Mean-Geometric Mean Inequality (AGM)
	14.2. Weight Finding Algorithm for the AGM
	14.3. The AGM, Newton’s Method, and Reduced Gradient Compared
	14.4. Exercises

	15. Search Algorithms
	15.1. Evolutionary Algorithms
	15.2. Ant Foraging Optimization

	IV. Convexity and the Fundamental Theorem of Linear Programming
	16. Important Sets for Optimization
	16.1. Special Linear Combinations
	16.2. Special Sets
	16.3. Special Properties of Sets
	16.4. Special Objects
	16.5. Exercises

	17. The Fundamental Theorem of Linear Programming
	17.1. The Finite Basis Theorem
	17.2. The Fundamental Theorem of Linear Programming
	17.3. For Further Study
	17.4. Exercises

	18. Convex Functions
	18.1. Convex Functions of a Single Variable
	18.2. Concave Functions
	18.3. Graphs of Convex and Concave Functions
	18.4. Multivariable Convex Functions
	18.5. Mathematical Results from Convexity
	18.6. Exercises

	19. Convex Optimization
	19.1. Convex Optimization and Applications
	19.2. Duality
	19.3. Subgradient Descent
	19.4. Exercises

	V. Combinatorial Optimization
	20. An Introduction to Combinatorics
	20.1. Introduction
	20.2. The Basic Tools of Counting
	20.2.1. When We Add, Subtract, Multiply, or Divide
	20.2.2. Permutations and Combinations

	20.3. The Binomial Theorem and Binomial Coefficients
	20.3.1. Pascal’s Triangle
	20.3.2. Binomial Coefficients
	20.3.3. The Binomial Theorem
	20.3.4. Another Counting Argument
	20.3.5. The Multinomial Theorem

	20.4. Counting When Objects Are Indistinguishable
	20.4.1. Permutations with Indistinguishable Objects
	20.4.2. Summary of Basic Counting Techniques

	20.5. The Pigeonhole Principle
	20.6. Exercises

	21. An Introduction to Graph Theory
	21.1. Basic Definitions
	21.2. Special Graphs
	21.2.1. Empty Graphs and the Trivial Graph
	21.2.2. Walks, Trails, Paths, and Cycles
	21.2.3. Trees
	21.2.4. Complete and Bipartite Graphs

	21.3. Vertex and Edge Cuts
	21.3.1. Graph Connectivity
	21.3.2. Notation for Removing a Vertex or Edge from a Graph
	21.3.3. Cut Vertices and Vertex Cuts
	21.3.4. Edge Cuts and Bridges

	21.4. Some Useful and Interesting Results
	21.5. Exercises

	22. Network Flows
	22.1. Basic Definitions
	22.2. Maximum Flows and Cuts
	22.3. The Dinitz-Edmonds-Karp-Ford-Fulkerson Algorithm
	22.4. Max Flow as a Linear Programming Problem
	22.5. Application to a Major League Baseball Pennant Race
	22.6. Exercises

	23. Minimum-Weight Spanning Trees and Shortest Paths
	23.1. Weighted Graphs and Spanning Trees
	23.2. Minimum-Weight Spanning Trees
	23.2.1. Kruskal’s Algorithm
	23.2.2. Prim’s Method
	23.2.3. Kruskal’s and Prim’s Compared

	23.3. Shortest Paths
	23.3.1. Dijkstra’s Algorithm
	23.3.2. A Linear Programming Approach to Shortest Paths

	23.4. Exercises

	24. Network Modeling and the Transshipment Problem
	24.1. Introduction of the Problem
	24.2. The Guarantee of Integer Solutions in Network Flow Problems
	24.3. Exercises

	25. The Traveling Salesperson Problem
	25.1. History of the Traveling Salesperson Problem
	25.2. The Problem
	25.3. Heuristic Solutions
	25.3.1. Nearest Neighbor
	25.3.2. Insertion Algorithms
	25.3.3. The Geometric Heuristic

	25.4. For Further Study
	25.5. Exercises

	VI. Optimization for Data Analytics and Machine Learning
	26. Probability
	26.1. Introduction
	26.2. Set Theory
	26.2.1. The Vocabulary of Sets and Sample Spaces
	26.2.2. The Algebra of Sets

	26.3. Foundations of Probability
	26.3.1. Borel Sets
	26.3.2. The Axioms and Basic Properties of Probability

	26.4. Conditional Probability
	26.4.1. Naive Probability
	26.4.2. Conditional Probability
	26.4.3. Bayes’ Theorem
	26.4.4. Independence

	26.5. Random Variables and Distributions
	26.5.1. Random Variables
	26.5.2. Probability Mass and Probability Density Functions
	26.5.3. Some Discrete Random Variable Probability Distributions

	26.6. Exercises

	27. Regression Analysis via Least Squares
	27.1. Introduction
	27.2. Formulation
	27.3. Linear Least Squares
	27.3.1. Pseudo-Inverse
	27.3.2. Brief Discussion of Probabilistic Interpretation

	27.4. Regularized Linear Least Squares

	28. Forecasting
	28.1. Smoothing
	28.1.1. Exponential Smoothing
	28.1.2. Trends
	28.1.3. Seasonality

	28.2. Stationary Data and Differencing
	28.2.1. Autocorrelation

	28.3. ARIMA Models
	28.3.1. Autoregressive Models
	28.3.2. Moving Average Models
	28.3.3. ARIMA Model Structure

	28.4. Partial
	28.4.1. Goodness-of-Fit Metrics

	28.5. Exercises

	29. Introduction to Machine Learning
	29.1. Introduction
	29.2. Nearest Neighbors
	29.3. Support Vector Machines
	29.4. Neural Networks
	29.4.1. Artificial Neural Networks
	29.4.2. Exercises

	A. Techniques of Proof
	A.1. Introduction to Propositional Logic
	A.2. Direct Proofs
	A.3. Indirect Proofs
	A.3.1. Proving the Contrapositive
	A.3.2. Proof by Contradiction

	A.4. The Principle of Mathematical Induction
	A.5. Exercises

	B. Useful Tools from Analysis and Topology
	B.1. Definitions
	B.2. Useful Theorems

	Bibliography
	Index

